Abstract
The problem of merging multiple sources information is central in several domains of computer science. In knowledge representation for artificial intelligence, several approaches have been proposed for propositional bases fusion, however, most of them are defined at a semantic level and are untractable. This paper proposes a new syntactic approach of belief bases fusion, called Removed Sets Fusion (RSF). The notion of removed-set, initially defined in the context of belief revision is extended to fusion and most of the classical fusion operations are syntactically captured by RSF. In order to efficiently implement RSF, the paper shows how RSF can be encoded into a logic program with answer set semantics, then presents an adaptation of the smodels system devoted to efficiently compute the removed sets in order to perform RSF. Finally a preliminary experimental study shows that the answer set programming approach seems promising for performing belief bases fusion on real scale applications.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baral, C., Kraus, S., Minker, J., Subrahmanian, V.S.: Combining knowledge basesconsisting of first order theories. In: ISMIS, pp. 92–101 (1991)
Revesz, P.Z.: On the semantics of theory change: arbitration between old and new information. In: 12th ACM symp. on Principles of Databases, pp. 71–92 (1993)
Lin, J.: Integration of weighted knowledge bases. AI 83, 363–378 (1996)
Revesz, P.Z.: On the semantics of arbitration. J. of Alg. and Comp. 7(2), 133–160 (1997)
Cholvy, L.: Reasoning about merging information. Handbook of Defeasible Reasoning and Uncertainly Management Systems 3, 233–263 (1998)
Konieczny, S., P´erez, R.P.: On the logic of merging. In: Proc. of KR 1998, pp. 488–498 (1998)
Lafage, C., Lang, J.: Logical representation of preferences for group decision making. In: Proc. of KR 2000, Breckenridge, pp. 457–468 (2000)
Konieczny, S.: On the difference between merging knowledge bases and combining them. In: Proc. of KR 2000, Breckenridge, pp. 135–144. Morgan Kaufmann, SanFrancisco (2000)
Delgrande, J., Dubois, D., Lang, J.: Iterated revision as prioritized merging. In: Proc. of KR 2006, Lake District, UK, pp. 210–220. AAAI Press, Stanford (2006)
Fagin, R., Kuper, G.M., Ullman, J.D., Vardi, M.Y.: Updating logical databases. Advances in Comp. Research, 1–18 (1986)
Meyer, T., Ghose, A., Chopra, S.: Syntactic representations of semantic merging operations. In: IJCAI 2001 Workshop on Incons. in Data and Knowledge (2001)
Konieczny, S., Lang, J., Marquis, P.: Distance-based merging: A general frame work and some complexity results. In: Proc. of KR 2002, pp. 97–108 (2002)
Dubois, D., Lang, J., Prade, H.: Possibilistic Logic. Handbook of Logic in Artificial Intelligence and Logic Programming 3, 439–513 (1994)
Benferhat, S., Dubois, D., Kaci, S., Prade, H.: Possibilistic Merging and Distance based Fusion of Propositional Information. In: AMAI 2002, vol. 34(1-3), pp. 217–252 (2002)
Papini, O.: A complete revision function in propositionnal calculus. In: Proc. of ECAI 1992, pp. 339–343. J. Wiley and Sons, Chichester (1992)
W ürbel, E., Jeansoulin, R., Papini, O.: Revision: An application in the frameworkof gis. In: Proc. of KR 2000, Breckenridge, pp. 505–516 (2000)
Eiter, T., Leone, N., Mateis, C., Pfeifer, G., Scarcello, F.: The kr system dlv:progress report, comparison and benchmarks. In: Proc. of KR 1998, pp. 406–417 (1998)
Cholewinski, P., Marek, V., Mikitiuk, A., Truszczynski, M.: Computing with defaultlogic. AI 112, 105–146 (1999)
Rao, P., Sagonas, K., Swift, W.D.S., Friere, J.: Xsb: A system for efficiently computingwell-founded semantics. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997, vol. 1265, pp. 430–440. Springer, Heidelberg (1997)
Niemelä, I., Simons, P.: An implementation of stable model and well-founded semantics for normal logic programs. In: Fuhrbach, U., Dix, J., Nerode, A. (eds.) LPNMR 1997, vol. 1265, pp. 420–429. Springer, Heidelberg (1997)
Linke, T.: More on no more. In: Proc. of NMR 2002 (2002)
Lin, J., Mendelzon, A.O.: Merging databases under constraints. In: IJCIS 1998, vol. 7(1), pp. 55–76 (1998)
Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proc. of the Fifth Int. Conf. on Logic Prog., pp. 1070–1080. MIT Press, Cambridge (1988)
Simons, P.: Extending and implementing the stable model semantics (2000)
Konieczny, S.: La logique du changement - Revision et fusion de connaissances.PhD thesis, Univ. de Lille (1999)
Bennaim, J., Benferhat, S., Papini, O., Würbel, E.: An answer set programmingencoding of prioritized removed sets revision: application to gis. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 604–616. Springer, Heidelberg (2004)
Delgrande, J., Dubois, D., Lang, J.: Iterated revision as prioritized merging. In: Proc. of KR 2006, Windermere, pp. 210–220 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hue, J., Papini, O., Wurbel, E. (2007). Syntactic Propositional Belief Bases Fusion with Removed Sets. In: Mellouli, K. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2007. Lecture Notes in Computer Science(), vol 4724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75256-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-540-75256-1_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75255-4
Online ISBN: 978-3-540-75256-1
eBook Packages: Computer ScienceComputer Science (R0)