Skip to main content

CTC: An Alternative to Extract Explanation from Bagging

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4788))

Abstract

Being aware of the importance of classifiers to be comprehensible when using machine learning to solve real world problems, bagging needs a way to be explained. This work compares Consolidated Tree’s Construction (CTC) algorithm with the Combined Multiple Models (CMM) method proposed by Domingos when used to extract explanation of the classification made by bagging. The comparison has been done from two main points of view: accuracy, and quality of the provided explanation. From the experimental results we can conclude that it is recommendable the use of CTC rather than the use of CMM. From the accuracy point of view, the behaviour of CTC is nearer the behaviour of bagging than CMM’s one. And, analysing the complexity of the obtained classifiers, we can say that Consolidated Trees (CT trees) will give simpler and, therefore, more comprehensible explanation than CMM classifiers. And besides, looking to the stability of the structure of the built trees, we could say that the explanation given by CT trees is steadier than the one given by CMM classifiers. As a consequence, the user of the classifier will feel more confident using CTC than using CMM.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauer, E., Kohavi, R.: An Empirical Comparison of Voting Classification Algorithms: Bagging, Boosting, and Variants. Machine Learning 36, 105–139 (1999)

    Article  Google Scholar 

  2. Breiman, L.: Bagging Predictors. Machine Learning 24, 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  3. Demšar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets. Journal of Machine Learning Research 7, 1–30 (2006)

    Google Scholar 

  4. Dietterich, T.G.: An Experimental Comparison of Three Methods for Constructing Ensembles of Decision Trees: Bagging, Boosting, and Randomization. Machine Learning 40, 139–157 (2000)

    Article  Google Scholar 

  5. Domingos, P.: Knowledge acquisition from examples via multiple models. In: Proc. 14th International Conf. on Machine Learning Nashville, TN, pp. 98–106 (1997)

    Google Scholar 

  6. Drummond, C., Holte, R.C.: Exploiting the Cost (In)sensitivity of Decision Tree Splitting Criteria. In: Proc. of the 17th Int. Conf. on Machine Learning, pp. 239–246 (2000)

    Google Scholar 

  7. Freund, Y., Schapire, R.E.: Experiments with a New Boosting Algorithm. In: Proceedings of the 13th International Conference on Machine Learning, pp. 148–156 (1996)

    Google Scholar 

  8. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  9. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI Repository of machine learning databases. University of California, Department of Information and Computer Science, Irvine, CA (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

  10. Pérez, J.M., Muguerza, J., Arbelaitz, O., Gurrutxaga, I., Martín, J.I.: Combining multiple class distribution modified subsamples in a single tree. Pattern Recognition Letters 28(4), 414–422 (2007)

    Article  Google Scholar 

  11. Pérez, J.M., Muguerza, J., Arbelaitz, O., Gurrutxaga, I., Martín, J.I.: Consolidated Trees: an Analysis of Structural Convergence. In: Williams, G.J., Simoff, S.J. (eds.) Data Mining. LNCS (LNAI), vol. 3755, pp. 39–52. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  12. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc. (eds.), San Mateo, California (1993)

    Google Scholar 

  13. Skurichina, M., Kuncheva, L.I., Duin, R.P.W.: Bagging and Boosting for the Nearest Mean Classifier: Effects of Sample Size on Diversity and Accuracy. In: Roli, F., Kittler, J. (eds.) MCS 2002. LNCS, vol. 2364, pp. 62–71. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Turney, P.: Bias and the quantification of stability. Machine Learning 20, 23–33 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Daniel Borrajo Luis Castillo Juan Manuel Corchado

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gurrutxaga, I., Pérez, J.M., Arbelaitz, O., Muguerza, J., Martín, J.I., Ansuategi, A. (2007). CTC: An Alternative to Extract Explanation from Bagging. In: Borrajo, D., Castillo, L., Corchado, J.M. (eds) Current Topics in Artificial Intelligence. CAEPIA 2007. Lecture Notes in Computer Science(), vol 4788. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75271-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75271-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75270-7

  • Online ISBN: 978-3-540-75271-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics