Abstract
Real-time search methods allow an agent to move in unknown environments. We provide two enhancements to the real-time search algorithm HLRTA*(k). First, we give a better way to perform bounded propagation, generating the HLRTA* LS (k) algorithm. Second, we consider the option of doing more than one action per planning step, by analyzing the quality of the heuristic found during lookahead, producing the HLRTA*(k,d) algorithm. We provide experimental evidence of the benefits of both algorithms, with respect to other real-time algorithms on existing benchmarks.
Supported by the Spanish REPLI-III project TIC-2006-15387-C03-01.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bulitko, V., Lee, G.: Learning in real time search: a unifying framework. Journal of Artificial Intelligence Research 25, 119–157 (2006)
Furcy, D., Koenig, S.: Combining two fast-learning real-time search algorithms yields even faster learning. In: Proc. 6th European Conference on Planning (2001)
Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Sys. Science & Cybernetics 2, 100–107 (1968)
Hernandez, C., Meseguer, P.: Improving convergence of lrta(k). In: IJCAI 2005 Work on Planning and Learning in a Priori Unknown or Dynamic Domais (2005)
Hernandez, C., Meseguer, P.: Lrta*(k). In: Proc. IJCAI 2005, pp. 1238–1243 (2005)
Hernandez, C., Meseguer, P.: Propagating updates in real-time search: Hlrta*(k). In: Marín, R., Onaindía, E., Bugarín, A., Santos, J. (eds.) CAEPIA 2005. LNCS (LNAI), vol. 4177, pp. 379–388. Springer, Heidelberg (2006)
Hernandez, C., Meseguer, P.: Improving lrta*(k). In: Proc. IJCAI 2007, pp. 2312–2317 (2007)
Koenig, S.: A comparison of fast search methods for real-time situated agents. In: Proc. AAMAS 2004, pp. 864–871 (2004)
Korf, R.E.: Real-time heuristic search. Artificial Intelligence 42, 189–211 (1990)
Thorpe, P.E.: A hybrid learning real-time search algorithm. Master’s thesis, Computer Science Dep. UCLA (1994)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hernández, C., Meseguer, P. (2007). Improving HLRTA*(k). In: Borrajo, D., Castillo, L., Corchado, J.M. (eds) Current Topics in Artificial Intelligence. CAEPIA 2007. Lecture Notes in Computer Science(), vol 4788. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75271-4_12
Download citation
DOI: https://doi.org/10.1007/978-3-540-75271-4_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75270-7
Online ISBN: 978-3-540-75271-4
eBook Packages: Computer ScienceComputer Science (R0)