Skip to main content

NMUS: Structural Analysis for Improving the Derivation of All MUSes in Overconstrained Numeric CSPs

  • Conference paper
Current Topics in Artificial Intelligence (CAEPIA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4788))

Included in the following conference series:

  • 599 Accesses

Abstract

Models are used in science and engineering for experimentation, analysis, model-based diagnosis, design and planning/sheduling applications. Many of these models are overconstrained Numeric Constraint Satisfaction Problems (NCSP), where the numeric constraints could have linear or polynomial relations. In practical scenarios, it is very useful to know which parts of the overconstrained NCSP instances cause the unsolvability.

Although there are algorithms to find all optimal solutions for this problem, they are computationally expensive, and hence may not be applicable to large and real-world problems. Our objective is to improve the performance of these algorithms for numeric domains using structural analysis. We provide experimental results showing that the use of the different strategies proposed leads to a substantially improved performance and it facilitates the application of solving larger and more realistic problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bailey, J., Stuckey, P.J.: Discovery of Minimal Unsatisfiable Subsets of Constraints using Hitting set dualization. In: Hermenegildo, M.V., Cabeza, D. (eds.) Practical Aspects of Declarative Languages. LNCS, vol. 3350, pp. 174–186. Springer, Heidelberg (2005)

    Google Scholar 

  2. Bruni, R.: Approximating minimal unsatisfiable subformulae by means of adaptive core search. Discrete Applied Mathematics 130, 85–100 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ceballos, R., Gómez-López, M.T., Gasca, M.T.R.M., del Valle, C.: Integración de técnicas basadas en modelos para la determinación de la diagnosis mínima de un sistema. Inteligencia Artificial. Revista Iberoamericana de Inteligencia Artificial No. 31, pp. 41–51 (2006)

    Google Scholar 

  4. Chinneck, J., Dravnieks, E.: Locating minimal infeasible constraint sets in linear programs. ORSA Journal on Computing 3, 157–168 (1991)

    MATH  Google Scholar 

  5. de la Banda, M.G., Stuckey, P.J., Wazny, J.: Finding all minimal unsatisfiable subsets. In: PPDP 2003. Proceedings of the 5th ACM SIGPLAN international conference on Principles and practice of declaritive programming, pp. 32–43. ACM Press, New York (2003)

    Chapter  Google Scholar 

  6. Gómez, M.T., Ceballos, R., Gasca, R.M., Del Valle, C.: Constraint Databases Technology for Polynomial Models Diagnosis. In: Proceedings DX 2004 (2004)

    Google Scholar 

  7. Grégoire, É., Mazure, B., Piette, C.: Local-Search Extraction of MUSes. Constraints 12(3) (2007)

    Google Scholar 

  8. Junker, U.: QuickXPlain. In: Conflict Detection for Arbitatrary Constraint Propagation Algorithms Proceedings IJCAI 2001 (2001)

    Google Scholar 

  9. Liffiton, M., Sakallah, K.: On finding all minimally unsatisfiable subformulas. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 173–186. Springer, Heidelberg (2005)

    Google Scholar 

  10. Mauss, J., Tatar, M.: Computing Minimal Conflicts for Rich Constraint Languages. In: ECAI, pp. 151–155 (2002)

    Google Scholar 

  11. Moffitt, M.D., Pollack, M.E.: Applying Local Search to Disjunctive Temporal Problems. In: Proced. IJCAI (2005)

    Google Scholar 

  12. Liffiton, M.H., Moffitt, M.D., Pollack, M.E., Sakallah, K.A.: Identifying Conflicts in Overconstrained Temporal Problems. In: Proceedings IJCAI 2007 (2007)

    Google Scholar 

  13. Oh, Y., Mneimneh, M.N., Andraus, Z.S., Sakallah, K.A., Markov, I.L.: AMUSE: A Minimally-Unsatisfiable Subformula Extractor. In: DAC 2004. Proceedings of the Design Automation Conference, ACM/IEEE, pp. 518–523 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Daniel Borrajo Luis Castillo Juan Manuel Corchado

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gasca, R.M., Del Valle, C., Gómez-López, M.T., Ceballos, R. (2007). NMUS: Structural Analysis for Improving the Derivation of All MUSes in Overconstrained Numeric CSPs. In: Borrajo, D., Castillo, L., Corchado, J.M. (eds) Current Topics in Artificial Intelligence. CAEPIA 2007. Lecture Notes in Computer Science(), vol 4788. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75271-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75271-4_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75270-7

  • Online ISBN: 978-3-540-75271-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics