Skip to main content

Information Fusion using the Kalman Filter based on Karhunen-Loève Decomposition

  • Chapter
Quantitative Information Fusion for Hydrological Sciences

Part of the book series: Studies in Computational Intelligence ((SCI,volume 79))

  • 698 Accesses

Properties of porous media, such as hydraulic conductivity and porosity, are intrinsically deterministic. However, due to the high cost associated with direct measurements, these properties are usually measured only at a limited number of locations. The number of direct measurements is definitely not enough to infer the true parameter fields. This problem is further complicated by the fact that medium properties exhibit a high degree of spatial heterogeneity. This combination of significant spatial heterogeneity and a relatively small number of direct observations leads to uncertainty in characterizing medium properties, which in turn results in uncertainty in estimating or predicting the corresponding system responses (such as hydraulic head). Fortunately, it is relatively easy to measure the system responses, which can be used to infer medium properties. With newly developed measurement techniques such as remote sensing and in-situ permanent sensors, more observations on system responses become available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson J L, Anderson S L (1999) Monthly Weather Review 127: 2741-2758

    Article  Google Scholar 

  2. Carrera J, Neuman S P (1986) Water Resour. Res. 22(2): 199-210

    Article  Google Scholar 

  3. Chen Y, Zhang D (2006) Advances in Water Resour. 29: 1107-1122

    Article  Google Scholar 

  4. Dagan G (1985) Water Resour. Res. 21(1): 65-72

    Article  MathSciNet  Google Scholar 

  5. Dietrich C R, Newsam G N (1989) Stoch. Hydrol. Hydraul. 3: 293-316

    Article  MATH  Google Scholar 

  6. Evensen G (1994) J. Geophys. Res. 99(C5): 10143-10162

    Article  Google Scholar 

  7. Evensen G (2003) Ocean Dynamics 53: 343-367

    Article  Google Scholar 

  8. Gelb A (1974) Applied Optimal Estimation, The MIT press

    Google Scholar 

  9. Ghanem R, Spanos P D (1991) Stochastic Finite Elements: A Spectral Approach, Springer-Verlag, New York

    MATH  Google Scholar 

  10. Ghanem R (1998) Water Resour. Res. 34: 2123-2136

    Article  Google Scholar 

  11. Ginn T R, Cushman J H (1990) Stoch. Hydrol. Hydraul. 4: 1-26

    Article  MATH  Google Scholar 

  12. Gomez-Hernanez J J, Sahuquillo A S, Capilla J E (1997) J. Hydrol. 203: 162-174

    Article  Google Scholar 

  13. Gu Y, Oliver D S (2004) SPE 89942

    Google Scholar 

  14. Gutjahr A, Wilson J (1989) Transport in Porous Media 4: 585-598

    Article  Google Scholar 

  15. Harbaugh A W, Banta E R, Hill M C, and McDonald M G (2000) MODFLOW-2000, the U.S. Geological Survey modular ground-water model – User guide to modularization concepts and the Ground-Water Flow Process: U.S. Geological Survey Open-File Report 00-92.

    Google Scholar 

  16. Heemink A W, Verlaan M, Segers A J (2001) Monthly Weather Review 129: 1718-1728

    Article  Google Scholar 

  17. Houtekamer P L, Mitchell H L (1998) Monthly Weather Review 126: 796-811

    Article  Google Scholar 

  18. Hughson D L, Gutjahr A (1998) Stoch. Hydrol. and Hydraul. 12: 155-170

    Article  MATH  Google Scholar 

  19. Kitanidis P K, Vomvoris E G (1983) Water Resour. Res. 19(3): 677-690

    Article  Google Scholar 

  20. Liu N, Oliver D S (2005) J. Petrol. Sci. and Eng. 47: 147-161

    Article  Google Scholar 

  21. Lu Z, Zhang D (2004) Adv. in Water Resour. 27(9): 859-874

    Article  Google Scholar 

  22. Lu Z, Zhang D (2004) SIAM J. Sci. Comp. 26(2): 558-577

    Article  MATH  MathSciNet  Google Scholar 

  23. Lu Z, Higdon D, Zhang D (2004) Comput. Methods in Water Resour., 1273-1283

    Google Scholar 

  24. Lu Z, Zhang D (2006) SPE Journal 11(2), 10.2118/93452-PA, 239-247

    Article  Google Scholar 

  25. Lu Z, Zhang D (2007) Multiscale Modeling and Simulation, in press

    Google Scholar 

  26. McLaughlin D, Townley L R (1996) Water Resour. Res. 32(5): 1131-1162

    Article  Google Scholar 

  27. Mclaughlin D (2002) Adv. in Water Resour. 25: 1275-1286

    Article  Google Scholar 

  28. Naevdal G, Johnsen L M, Aanonsen S I, Vefring E H (2003) SPE 84372

    Google Scholar 

  29. Neuman S P (1980) Water Resour. Res. 16(2): 331-346

    Article  Google Scholar 

  30. Pham D, Verron J, Roubaud (1998) J. Mar. Syst. (16):323-340

    Google Scholar 

  31. Sun N-Z, Yeh W W-G (1992) Water Resour. Res. 28(12): 3269-3280

    Article  Google Scholar 

  32. Tartakovsky D M, Neuman S P, Lu Z (1999) Water Resour. Res. 35(3): 731-745

    Article  Google Scholar 

  33. Verlaan M, Heemink A W (1997) Stoch. Hydrol. Hydraul. 11: 347-368

    Article  Google Scholar 

  34. Whitaker J S, Hamill T M (2002) Monthly Weather Review 130: 1913-1924

    Article  Google Scholar 

  35. Woodbury A D, Ulrych T J (2000) Water Resour. Res. 36(8): 2081-2093

    Article  Google Scholar 

  36. Yeh W W G (1986) Water Resour. Res. 22(2): 95-108

    Article  Google Scholar 

  37. Yeh T C, Jin M, Hanna S (1996) Water Resour. Res. 32(1): 85-92

    Article  Google Scholar 

  38. Zhang D (2002) Stochastic Methods for Flow in Porous Media: Coping with uncertainties, Academic Press, San Diego, Calif.

    Google Scholar 

  39. Zhang D, Lu Z (2003) J. Comput. Physics 194(2): 773–794

    Article  Google Scholar 

  40. Zhang D, Lu Z, Chen Y (2007) SPE Journal, 12(1), 10.2118/95277-PA, 108-117.

    Article  Google Scholar 

  41. Zimmerman D A, de Marsily G, Gotway C A, Marietta M G, Axness C L, Beauheim R L, Bras R L, Carrera J, Dagan G, Davies P B, Gallegos D P, Galli A, Gomez-Hernandez J, Grindgrod P, Gutjahr A L, Kitanidis P K, LaVenue A M, McLaughlin D, Neuman S P, RamaRao B S, Ravenne C, Rubin Y, (1998) Water Resour. Res. 34(6): 1373-1413

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lu, Z., Zhang, D., Chen, Y. (2008). Information Fusion using the Kalman Filter based on Karhunen-Loève Decomposition. In: Cai, X., Yeh, T.C.J. (eds) Quantitative Information Fusion for Hydrological Sciences. Studies in Computational Intelligence, vol 79. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75384-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75384-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75383-4

  • Online ISBN: 978-3-540-75384-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics