Skip to main content

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 38))

  • 2497 Accesses

Abstract

vertebrate In vertebrate animals, the geometric arrangement of surfaces in an environment has been shown to play an important role in relocating a desired place. In such relocation tasks, an animal is typically first shown a target location in a rectangular enclosure. After being disoriented, it then has the task of relocating the target. Aside from the geometric shape of the enclosure, other nongeometric or featural cues are typically available. These include colours of walls, objects serving as landmarks, or smells. landmarks An often reported pattern of results is preferred reliance on the geometric cues, sometimes to the exclusion of nongeometric cues. Various axes of space, shape parameters that include principal axes and axes of symmetry, principal axes may play a role in how animals use geometric information to determine which direction is which. Some work on robotics related to the geometry literature is presented and the issue of modularity is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biegler, R.: Possible uses of path integration in animal navigation. Anim. Learn. Behav. 28, 257–277 (2000)

    Google Scholar 

  2. Cartwright, B.A., Collett, T.S.: Landmark Learning in Bees. Journal of Comparative Physiology A 151, 521–543 (1983)

    Article  Google Scholar 

  3. Cheng, K.: A purely geometric module in the rat’s spatial representation. Cognition 23, 149–178 (1986)

    Article  Google Scholar 

  4. Cheng, K.: Some psychophysics of the pigeon’s use of landmarks. Journal of Comparative Physiology A 162, 815–826 (1988)

    Article  Google Scholar 

  5. Cheng, K.: The vector sum model of pigeon landmark use. Journal of Experimental Psychology: Animal Behavior Processes 15, 366–375 (1989)

    Article  Google Scholar 

  6. Cheng, K.: Reflections on geometry and navigation. Connection Science 17, 5–21 (1990)

    Article  Google Scholar 

  7. Cheng, K.: The determination of direction in landmark-based spatial search in pigeons: A further test of the vector sum model. Animal Learning and Behavior 22, 291–301 (1994)

    Google Scholar 

  8. Cheng, K.: Landmark based spatial memory in the pigeon. In: Medin, D.L. (ed.) The psychology of learning and motivation, vol. 22, pp. 1–21. Academic Press, New York (1995)

    Google Scholar 

  9. Cheng, K.: How honeybees find a place: lessons from a simple mind. Animal Learning and Behavior 28, 1–15 (2000)

    Google Scholar 

  10. Cheng, K.: Arthropod navigation: Ants, bees, crabs, spiders finding their way. In: Wasserman, E.A., Zentall, T.R. (eds.) Comparative cognition: Experimental explorations of animal intelligence, pp. 189–209. Oxford University Press, Oxford (2006)

    Google Scholar 

  11. Cheng, K., Gallistel, C.R.: Shape parameters explain data from spatial transformations: Comment on Pearce et al (2004) and Tommasi and Polli (2004). Journal of Experimental Psychology: Animal Behavior Processes 31, 254–259 (2005)

    Article  Google Scholar 

  12. Cheng, K., Newcombe, N.S.: Is there a geometric module for spatial orientation? Squaring theory and evidence. Psychonomic Bulletin and Review 12, 1–23 (2005)

    Google Scholar 

  13. Cheng, K., Spetch, M.L.: Mechanisms of landmark use in mammals and birds. In: Healy, S. (ed.) Spatial representation in animals, pp. 1–17. Oxford University Press, Oxford (1998)

    Google Scholar 

  14. Cheng, K., Spetch, M.L., Kelly, D.M., Bingman, V.P.: Small-scale spatial cognition in pigeons. Behav. Proc. 72, 115–127 (2006)

    Article  Google Scholar 

  15. Collett, T.S., Fauria, K., Dale, K.: Contextual cues and insect navigation. In: Jeffery, K.J. (ed.) The neurobiology of spatial behaviour, pp. 31–47. Oxford University Press, Oxford (2003)

    Google Scholar 

  16. Collett, T.S., Rees, J.A.: View-based navigation in Hymenoptera: multiple strategies of landmark guidance in approach to a feeder. Journal of Comparative Physiology A 181, 47–58 (1997)

    Article  Google Scholar 

  17. Collett, T.S., Zeil, J.: Places and landmarks: an arthropod perspective. In: Healy, S. (ed.) Spatial representation in animals, pp. 18–53. Oxford University Press, Oxford (1998)

    Google Scholar 

  18. Coltheart, M.: Modularity and cognition. Trends Cognition Science 3, 115–120 (1999)

    Article  Google Scholar 

  19. Kelly, D.D., Spetch, M.L.: Pigeon’s encoding of geometric and featural properties of a spatial environment. Journal of Comparative Psychology 112, 259–269 (1998)

    Article  Google Scholar 

  20. Kelly, D.D., Spetch, M.L.: Pigeons encode relative geometry. Journal of Experimental Psychology: Animal Behavior Processes 27, 417–422 (2001)

    Article  Google Scholar 

  21. Kelly, D.D., Spetch, M.L.: Reorientation in a two-dimensional environment: II. Do pigeons (Columba livia) encode the featural and geometric properties of a two-dimensional schematic of a room? Journal of Comparative Psychology 118, 384–395 (2004)

    Article  Google Scholar 

  22. Dale, K., Collett, T.S.: Using artificial evolution and selection to model insect navigation. Current Biology 11, 1305–1316 (2002)

    Article  Google Scholar 

  23. Davis, E.: Representing and acquiring geographical knowledge, Pitman, London (1986)

    Google Scholar 

  24. Egerton, S., Callaghan, V.: From mammals to machines: towards a biologically inspired mapping model for autonomous mobile robots. In: Proc. International Conference on Intelligent Autonomous Systems, Venice, Italy (2000)

    Google Scholar 

  25. Egerton, S., Callaghan, V., Chernett, P.: A biologically inspired mapping model for autonomous mobile robots. In: Mohammadin, M. (ed.) New frontiers in computational intelligence and its applications, pp. 20–29. IOS Press, Amsterdam (2000)

    Google Scholar 

  26. Etienne, A.S., Jeffery, K.J.: Path integration in mammals. Hippocampus 14, 180–192 (2004)

    Article  Google Scholar 

  27. Fodor, J.A.: The modularity of mind. MIT Press, Cambridge, MA (1983)

    Google Scholar 

  28. Fodor, J.A.: The mind doesn’t work that way. MIT Press, Cambridge, MA (2001)

    Google Scholar 

  29. Franz, M.O., Mallot, H.A.: Biomimetic robot navigation. Robotics Autonomous System 30, 133–153 (2006)

    Article  Google Scholar 

  30. Von Frisch, K., Lindauer, M.M.: Himmel und Erde in Konkurrenz bei der Orientierung der Bienen [Sky and Earth in competition in the orientation of bees]. Naturwissenschaften 41, 245–253 (1954)

    Article  Google Scholar 

  31. Gallistel, C.R.: The organization of learning. MIT Press, Cambridge, MA (1990)

    Google Scholar 

  32. Gallistel, C.R.: The replacement of general-purpose learning models with adaptively specialized learning modules. In: Gazzaniga, M.S. (ed.) The new cognitive neurosciences, MIT Press, Cambridge, MA (2000)

    Google Scholar 

  33. Gallistel, C.R.: The principle of adaptive specialization as it applies to learning and memory. In: Kluwe, R.H., Lüer, G., Rösler, F. (eds.) Principles of human learning and memory, Birkhäuser Verlag, Berlin (2002)

    Google Scholar 

  34. Gouteux, S., Thinus-Blanc, C., Vauclair, J.: Rhesus monkeys use geometric and nongeometric information during a reorientation task. Journal of Experimental Psychology: General 130, 505–519 (2001)

    Article  Google Scholar 

  35. Hermer, L., Spelke, E.: A geometric process for spatial representation in young children. Nature 370, 57–59 (1994)

    Article  Google Scholar 

  36. Hermer, L., Spelke, E.: Modularity and development: the case of spatial reorientation. Cognition 61, 195–232 (1996)

    Article  Google Scholar 

  37. Learmonth, A.E., Nadel, L., Newcombe, N.S.: Children’s use of landmarks: implications for modularity theory. Psychology Science 13, 337–341 (2002)

    Article  Google Scholar 

  38. Learmonth, A.E., Newcombe, N.S., Huttenlocher, J.: Toddlers’ use of metric information and landmarks to reorient. Journal of Experimental Child Psychology 80, 225–244 (2001)

    Article  Google Scholar 

  39. Leyton, M.: Symmetry, Causality, Mind. MIT Press, Cambridge, MA (1992)

    Google Scholar 

  40. Margules, J., Gallistel, C.R.: Heading in the rat: determination by environmental shape. Animal Learning and Behavior 16, 404–410 (1988)

    Google Scholar 

  41. Newcombe, N.S.: The nativist-empiricist controversy in the context of recent research on spatial and quantitative development. Psychology Science 13, 395–401 (2002)

    Article  Google Scholar 

  42. Newcombe, N.S., Huttenlocher, J.: Making space: the development of spatial representation and reasoning. MIT Press, Cambridge, MA (2000)

    Google Scholar 

  43. Nolfi, S.: Power and limits of reactive agents. Robotics Autonomous System 42, 119–145 (2002)

    MATH  Google Scholar 

  44. Pearce, J.M., Good, M.A., Jones, P.M., McGregor, A.: Transfer of spatial behavior between different environments: Implications for theories of spatial learning and for the role of the hippocampus in spatial learning. Journal of Experimental Psychology: Animal Behavior Processes 30, 135–147 (2004)

    Article  Google Scholar 

  45. Sovrano, V.A., Bisazza, A., Vallortigara, G.: Modularity as a fish (Xenotoca eiseni) views it: Conjoining geometric and nongeometric information for spatial reorientation. Journal of Experimental Psychology: Animal Behavior Processes 29, 199–210 (2003)

    Article  Google Scholar 

  46. Tommasi, L., Polli, C.: Representation of two geometric features of the environment in the domestic chick (Gallus gallus). Animal Cognition 7, 53–59 (2004)

    Article  Google Scholar 

  47. Tommasi, L., Vallortigara, G.: Searching for the center: spatial cognition in the domestic chick (Gallus gallus). Journal of Experimental Psychology: Animal Behavior Processes 26, 477–486 (2000)

    Article  Google Scholar 

  48. Tommasi, L., Vallortigara, G., Zanforlin, M.: Young chicks learn to localize the center of a spatial environment. Journal of Comparative Physiology A 180, 567–572 (1997)

    Article  Google Scholar 

  49. Vallortigara, G., Pagni, P., Sovrano, V.A.: Separate geometric and non-geometric modules for spatial reorientation: Evidence from a lopsided animal brain. Journal of Neuroscience 16, 390–400 (2004)

    Google Scholar 

  50. Vallortigara, G., Zanforlin, M., Pasti, G.: Geometric modules in animals’ spatial representations: a test with chicks (Gallus gallus domesticus). Journal of Comparative Psychology 104, 248–254 (1990)

    Article  Google Scholar 

  51. Vargas, J.P., López, J.C., Salas, C., Thinus-Blanc, C.: Encoding of geometric and featural information by goldfish (Carassius auratus). Journal of Comparative Psychology 118, 206–216 (2004)

    Article  Google Scholar 

  52. Wang, R.F., Spelke, E.S.: Human spatial representation: insights from animals. Trends Cognition Science 6, 376–382 (2002)

    Article  Google Scholar 

  53. Wang, R.F., Spelke, E.S.: Comparative approaches to human navigation. In: Jeffery, K.J. (ed.) The neurobiology of spatial behaviour, Oxford University Press, Oxford (2003)

    Google Scholar 

  54. Webb, B.: What does robotics offer animal behaviour? Animal Behaviour 60, 545–558 (2000)

    Article  Google Scholar 

  55. Wehner, R.: The polarization-vision project: championing organismic biology. In: Schildberger, K., Elsner, N. (eds.) Neural basis of behavioural adaptation, G Fischer, Stuttgart (1994)

    Google Scholar 

  56. Wehner, R.: Desert Ant Navigation: GHw Miniature Brains Solve Complex Tasks. Journal of Comparative Physiology A 189, 579–588 (2003)

    Article  Google Scholar 

  57. Wehner, R., Räber, F.: Visual Spatial Memory in Desert Ants, Cataglyphis Bicolor (Hymenoptera: Formicidae). Experientia 35, 1569–1571 (1979)

    Article  Google Scholar 

  58. Wehner, R., Srinivasan, M.V.: Path integration in insects. In: Jeffery, K.J. (ed.) The neurobiology of spatial behaviour, Oxford University Press, Oxford (2003)

    Google Scholar 

  59. Yeap, W.K., Jefferies, M.E.: Computing a Representation of the Local Environment. Artificial Intelligence 107(2), 265–301 (1999)

    Article  MATH  Google Scholar 

Download references

Authors

Editor information

Margaret E. Jefferies Wai-Kiang Yeap

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cheng, K. (2007). Geometry and Navigation. In: Jefferies, M.E., Yeap, WK. (eds) Robotics and Cognitive Approaches to Spatial Mapping. Springer Tracts in Advanced Robotics, vol 38. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75388-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75388-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75386-5

  • Online ISBN: 978-3-540-75388-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics