Skip to main content

Reactive Collision Avoidance for Unmanned Aerial Vehicles Using Doppler Radar

  • Chapter
Field and Service Robotics

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 42))

Summary

Research into reactive collision avoidance for unmanned aerial vehicles has been conducted on unmanned terrestrial and mini aerial vehicles utilising active Doppler radar obstacle detection sensors. Flight tests conducted by flying a mini UAV at an obstacle have confirmed that a simple reactive collision avoidance algorithm enables aerial vehicles to autonomously avoid obstacles. This builds upon simulation work and results obtained using a terrestrial vehicle that had already confirmed that active sensors and a reactive collision avoidance algorithm are able to successfully find a collision free path through an obstacle field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barrows, G.: Mixed-Mode VLSI Optic Flow Sensors For Micro Air Vehicles. PhD thesis, University of Maryland, College Park (1999)

    Google Scholar 

  2. Zufferey, J.: Bio-Inspired Vision-Based Flying Robots. PhD thesis, Ecole Polytechnique Federale De Lausanne (2005)

    Google Scholar 

  3. McGee, T., Sengupta, R., Hedrick, K.: Obstacle detection for small autonomous aircraft using sky segmentation. In: Proceedings of the IEEE International Conference on Robotics and Automation (2005)

    Google Scholar 

  4. Lee, D., Beard, R., Merrel, P., Zhan, P.: See and avoidance behaviors for autonomous navigation. In: SPIE Opics East, Robotics Technologies and Architectures, Mobile Robot XVI, vol. 5609-05 (2004)

    Google Scholar 

  5. Griffiths, S., Saunders, J., Curtis, A., McLain, T., Beard, R.: Obstacle and terrain, avoidance for miniature aerial vehicles. In: IEEE Robotics and Automation Magazine (to appear)

    Google Scholar 

  6. Gresham, I., et al.: Ultra-wideband radar sensors for short-range vehicular applications. Transactions on Microwave Theory and Techniques 52, 2105–2122 (2004)

    Article  Google Scholar 

  7. Fontana, R., Richley, E., Marzullo, A., Beard, L., Mulloy, R., Knight, E.: An ultra wideband radar for micro air vehicles air vehicle applications. In: IEEE Conference on Ultra Wideband Systems and Technologies (2002)

    Google Scholar 

  8. Lingelbach, F.: Path Planning using Probabilistic Cell Decomposition. PhD thesis (2005)

    Google Scholar 

  9. Pettersson, P.: Sampling-based Path Planning for an Autonomous Helicopter. PhD thesis, Linkoping Institute of Technology at Linkoping University (2006)

    Google Scholar 

  10. Sinopoli, B., Micheli, M., Donato, G., Koo, J.: Vision based navigation for an unmanned air vehicle. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1757–1765 (2001)

    Google Scholar 

  11. Frew, E., Langelaan, J., Joo, S.: Adaptive receding horizon control for vision based navigation of small unmanned aircraft. In: Proceedings of the 2006 American Control Conference (2006)

    Google Scholar 

  12. Woll, J.: Vorad collision warning radar, pp. 369–372 (1995)

    Google Scholar 

  13. Brigham, E.: The Fast Fourier Transform. Prentice-Hall Inc., Englewood Cliffs (1974)

    MATH  Google Scholar 

  14. Sarabandi, K., Park, M.: A radar cross-section model for power lines at millimeter-wave frequencies. IEEE Transactions on Antennas and Propagation 51, 2353–2360 (2003)

    Article  Google Scholar 

  15. Yonemoto, N., Yamamotoa, K., Yamadaa, K., Yasuib, H., Tanakab, N., Migliaccioc, C., Dauvignacc, J., Pichotc, C.: Performance of obstacle detection and collision warning system for civil helicopters. Proc. SPIE 6226 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Christian Laugier Roland Siegwart

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Viquerat, A., Blackhall, L., Reid, A., Sukkarieh, S., Brooker, G. (2008). Reactive Collision Avoidance for Unmanned Aerial Vehicles Using Doppler Radar. In: Laugier, C., Siegwart, R. (eds) Field and Service Robotics. Springer Tracts in Advanced Robotics, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75404-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75404-6_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75403-9

  • Online ISBN: 978-3-540-75404-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics