Skip to main content

Management of Large Spatial Ontology Bases

  • Conference paper
Ontologies-Based Databases and Information Systems (ODBIS 2006, ODBIS 2005)

Abstract

In this paper we propose a method for efficient management of large spatial ontologies. Current spatial ontologies are usually represented using an ontology language, such as OWL and stored as OWL files. However, we have observed some shortcomings using this approach especially in the efficiency of spatial query processing. This fact motivated the development of a hybrid approach that uses an R-tree as a spatial index structure. In this way we are able to support efficient query processing over large spatial ontologies, maintaining the benefits of ontological reasoning. We present a case study for emergency teams during Search and Rescue (SaR) operations showing how an Ontology Data Service (SHARE-ODS) can benefit from a spatial index. Performance evaluation shows the superiority of our proposed technique compared to the original approach. To the best of our knowledge, this is the first attempt to address the problem of efficient management of large spatial ontology bases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Konstantopoulos, S., Paliouras, G., Chantzinotas, S.: Share-ods: An ontology data service for search and rescue operations. In: Antoniou, G., Potamias, G., Spyropoulos, C., Plexousakis, D. (eds.) SETN 2006. LNCS (LNAI), vol. 3955, pp. 525–528. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Konstantopoulos, S., Paliouras, G., Chantzinotas, S.: Share-ods: An ontology data service for search and rescue operations. In: Technical Report DEMO-2006-1, NCSR ’Demokritos’, Athens (2006)

    Google Scholar 

  3. Stoffel, K., Taylor, M.G., Hendler, J.A.: Efficient management of very large ontologies. In: American Association for Artificial Intelligence Conference (AAAI), pp. 442–447 (1997)

    Google Scholar 

  4. Raffaeta, A., Turini, F., Renso, C.: Enhancing giss for spatio-temporal reasoning. In: ACM International Symposium on Geographic Information Systems (ACM-GIS), pp. 42–48. ACM Press, New York (2002)

    Chapter  Google Scholar 

  5. Motik, B., Sattler, U.: Practical dl reasoning over large aboxes with kaon2. In: Submitted for publication (2006), http://www.fzi.de/ipe/eng/publikationen.php

  6. Guttman, A.: R-trees: A dynamic index structure for spatial searching. In: ACM SIGMOD International Conference on Management of Data (SIGMOD), pp. 47–57. ACM Press, New York (1984)

    Google Scholar 

  7. Agarwal, P.: Ontological considerations in giscience. International Journal of Geographical Information Science 19(5), 501–536 (2005)

    Article  Google Scholar 

  8. Fonseca, F.T., Egenhofer, M.J., Agouris, P., Câmara, G.: Using ontologies for integrated geographical information systems. Transactions in Geographic Information Systems 6(3) (2002)

    Google Scholar 

  9. Egenhofer, M.J.: Toward the semantic geospatial web. In: ACM International Symposium on Geographic Information Systems (ACM-GIS), pp. 1–4. ACM Press, New York (2002)

    Chapter  Google Scholar 

  10. Wessel, M., Möller, R.: A flexible dl-based architecture for deductive information systems. In: IJCAR Workshop on Empirically Successful Computerized Reasoning (ESCoR), pp. 92–111 (2006)

    Google Scholar 

  11. Gaede, V., Günther, O.: Multidimensional access methods. ACM Computing Surveys 30(2), 170–231 (1998)

    Article  Google Scholar 

  12. Hjaltason, G.R., Samet, H.: Distance browsing in spatial databases. ACM Transactions on Database Systems 24(2), 265–318 (1999)

    Article  Google Scholar 

  13. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The r*-tree: An efficient and robust access method for points and rectangles. In: ACM SIGMOD International Conference on Management of Data (SIGMOD), pp. 322–331. ACM Press, New York (1990)

    Google Scholar 

  14. den Bercken, J.V., Blohsfeld, B., Dittrich, J.P., Krämer, J., Schäfer, T., Schneider, M., Seeger, B.: Xxl - a library approach to supporting efficient implementations of advanced database queries. In: International Conference on Very Large Data Bases (VLDB), pp. 39–48 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Martine Collard

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dellis, E., Paliouras, G. (2007). Management of Large Spatial Ontology Bases. In: Collard, M. (eds) Ontologies-Based Databases and Information Systems. ODBIS ODBIS 2006 2005. Lecture Notes in Computer Science, vol 4623. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75474-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75474-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75473-2

  • Online ISBN: 978-3-540-75474-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics