Skip to main content

Fast NML Computation for Naive Bayes Models

  • Conference paper
Discovery Science (DS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4755))

Included in the following conference series:

Abstract

The Minimum Description Length (MDL) is an informationtheoretic principle that can be used for model selection and other statistical inference tasks. One way to implement this principle in practice is to compute the Normalized Maximum Likelihood (NML) distribution for a given parametric model class. Unfortunately this is a computationally infeasible task for many model classes of practical importance. In this paper we present a fast algorithm for computing the NML for the Naive Bayes model class, which is frequently used in classification and clustering tasks. The algorithm is based on a relationship between powers of generating functions and discrete convolution. The resulting algorithm has the time complexity of \(\mathcal{O}n^{2}\), where n is the size of the data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brent, R.P.: Multiple-precision zero-finding methods and the complexity of elementary function evaluation. In: Traub, J.F. (ed.) Analytic Computational Complexity, Academic Press, New York (1976)

    Google Scholar 

  2. Flajolet, P., Sedgewick, R.: Analytic Combinatorics (in preparation)

    Google Scholar 

  3. GrĂĽnwald, P.: The Minimum Description Length Principle. MIT Press, Cambridge (2007)

    Google Scholar 

  4. GrĂĽnwald, P., Myung, J., Pitt, M. (eds.): Advances in Minimum Description Length: Theory and Applications. MIT Press, Cambridge (2005)

    Google Scholar 

  5. Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning 20(3), 197–243 (1995)

    MATH  Google Scholar 

  6. Henrici, P.: Automatic computations with power series. Journal of the ACM 3(1), 11–15 (1956)

    Google Scholar 

  7. Knuth, D.E.: The Art of Computer Programming, 3rd edn. Seminumerical Algorithms, vol. 2. Addison-Wesley, Reading (1998)

    Google Scholar 

  8. Knuth, D.E., Pittel, B.: A recurrence related to trees. Proceedings of the American Mathematical Society 105(2), 335–349 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kontkanen, P., Myllymäki, P.: Analyzing the stochastic complexity via tree polynomials. Technical Report 2005-4, Helsinki Institute for Information Technology (HIIT) (2005)

    Google Scholar 

  10. Kontkanen, P., Myllymäki, P.: A linear-time algorithm for computing the multinomial stochastic complexity. Information Processing Letters 103(6), 227–233 (2007)

    Article  Google Scholar 

  11. Kontkanen, P., Myllymäki, P., Buntine, W., Rissanen, J., Tirri, H.: An MDL framework for data clustering. In: Grünwald, P., Myung, I.J., Pitt, M. (eds.) Advances in Minimum Description Length: Theory and Applications, MIT Press, Cambridge (2006)

    Google Scholar 

  12. Kontkanen, P., Wettig, H., Myllymäki, P.: NML computation algorithms for tree-structured multinomial Bayesian networks. EURASIP Journal on Bioinformatics and Systems Biology (to appear)

    Google Scholar 

  13. Nakos, G.: Expansions of powers of multivariate formal power series. Mathematica Journal 3(1), 45–47 (1993)

    Google Scholar 

  14. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo (1988)

    Google Scholar 

  15. Rissanen, J.: Stochastic Complexity in Statistical Inquiry. World Scientific, New Jersey (1989)

    MATH  Google Scholar 

  16. Rissanen, J.: Fisher information and stochastic complexity. IEEE Transactions on Information Theory 42(1), 40–47 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  17. Rissanen, J.: Information and Complexity in Statistical Modeling. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  18. Shtarkov, Y.M.: Universal sequential coding of single messages. Problems of Information Transmission 23, 3–17 (1987)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Vincent Corruble Masayuki Takeda Einoshin Suzuki

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mononen, T., Myllymäki, P. (2007). Fast NML Computation for Naive Bayes Models. In: Corruble, V., Takeda, M., Suzuki, E. (eds) Discovery Science. DS 2007. Lecture Notes in Computer Science(), vol 4755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75488-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75488-6_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75487-9

  • Online ISBN: 978-3-540-75488-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics