Abstract
A geometric graph is a labeled graph whose vertices are points in the 2D plane with an isomorphism invariant under geometric transformations such as translation, rotation, and scaling. While Kuramochi and Karypis (ICDM2002) extensively studied the frequent pattern mining problem for geometric subgraphs, the maximal graph mining has not been considered so far. In this paper, we study the maximal (or closed) graph mining problem for the general class of geometric graphs in the 2D plane by extending the framework of Kuramochi and Karypis. Combining techniques of canonical encoding and a depth-first search tree for the class of maximal patterns, we present a polynomial delay and polynomial space algorithm, MaxGeo, that enumerates all maximal subgraphs in a given input geometric graph without duplicates. This is the first result establishing the output-sensitive complexity of closed graph mining for geometric graphs. We also show that the frequent graph mining problem is also solvable in polynomial delay and polynomial time.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aho, A.V., Hopcroft, J.E., Ullman, J.D.: Data Structures and Algorithms (1983)
Akutsu, T., Tamaki, H., Tokuyama, T.: Distribution of distances and triangles in a point set and algorithms for computing the largest common point sets. Discr. & Comp. Geom. 20(3), 307–331 (1998)
Arimura, H., Uno, T.: An output-polynomial time algorithm for mining frequent closed attribute trees. In: Kramer, S., Pfahringer, B. (eds.) ILP 2005. LNCS (LNAI), vol. 3625, pp. 1–19. Springer, Heidelberg (2005)
Arimura, H., Uno, T.: A polynomial space and polynomial delay algorithm for enumeration of maximal motifs in a sequence. In: Deng, X., Du, D.-Z. (eds.) ISAAC 2005. LNCS, vol. 3827, Springer, Heidelberg (2005)
Arimura, H., Uno, T.: Effcient algorithms for mining maximal flexible patterns in texts and sequences, TCS-TR-A-06-20, DCS, Hokkaido Univeristy 2006 (submitting)
Asai, T., Abe, K., Kawasoe, S., Arimura, H., Sakamoto, H., Arikawa, S.: Efficient substructure discovery from large semi-structured data. In: Proc. SDM 2002 (2002)
Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete App. Math. 65, 21–46 (1996)
Chi, Y., Muntz, R.R., Nijssen, S., Kok, J.N.: Frequent subtree mining – An overview. Fundam. Inform. 66(1-2), 161–198 (2005)
Chi, Y., Yang, Y., Xia, Y., Muntz, R.R.: CMTreeMiner: mining both closed and maximal frequent subtrees. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, Springer, Heidelberg (2004)
Garriga, G.C., Khardon, R., De Raedt, L.: On mining closed sets in multi-relational data. In: Proc. IJCAI 2007, pp. 804–809 (2007)
Guerra, C.: Vision and image processing algorithms. In: Algorithms and Theory of Computation Handbook, ch. 22, vol. f 22-1–22-23, CRC Press (1999)
Inokuchi, A., Washio, T., Motoda, H.: An apriori-based algorithm for mining frequent substructures from graph data. In: Zighed, A.D.A., Komorowski, J., Żytkow, J.M. (eds.) PKDD 2000. LNCS (LNAI), vol. 1910, pp. 13–23. Springer, Heidelberg (2000)
Jain, A.: Fundamentals of Digital Image Processing. Prentice-Hall, Englewood Cliffs (1986)
Khardon, R.: Learning function-free horn expressions. Machine Learning 37(3), 241–275 (1999)
Kuramochi, M., Karypis, G.: Discovering frequent geometric subgraphs. In: Proc. IEEE ICDM 2002, pp. 258–265 (2002)
Nakano, S.: Efficient generation of plane trees. Information Processing Letters 84, 167–172 (2002)
Nijssen, S., Kok, J.N.: Effcient discovery of frequent unordered trees. In: Proc. MGTS 2003 (2003)
Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for association rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 398–416. Springer, Heidelberg (1999)
Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, Heidelberg (1985)
Termier, A., Rousset, M.-C., Sebag, M.: Dryade: a new approach for discovering closed frequent trees in heterogeneous tree databases. In: Proc. ICMD 2004 (2004)
Tsuda, K., Kudo, T.: Clustering graphs by weighted substructure mining. In: Proc. ICML 2006, pp. 953–960 (2006)
Uno, T., Asai, T., Uchida, Y., Arimura, H.: An efficient algorithm for enumerating closed patterns in transaction databases. In: Suzuki, E., Arikawa, S. (eds.) DS 2004. LNCS (LNAI), vol. 3245, pp. 16–30. Springer, Heidelberg (2004)
Wang, J., Han, J.: BIDE: Efficient Mining of Frequent Closed Sequences. In: Proc. IEEE ICDE 2004, pp. 79–90 (2004)
Washio, T., Motoda, H.: State of the art of graph-based data mining. SIGKDD Explor. 5(1), 59–68 (2003)
Yan, X., Han, J.: CloseGraph: mining closed frequent graph patterns. In: Proc. KDD 2003 (2003)
Yang, G.: The complexity of mining maximal frequent itemsets and maximal frequent patterns. In: Proc. KDD 2004, pp. 344–353 (2004)
Zaki, M.J.: Efficiently mining frequent trees in a forest. In: Proc. KDD 2002, pp. 71–80 (2002)
Zaki, M.J., Aggarwal, C.C.: XRules: an effective structural classifier for XML data. In: Proc. KDD 2003, pp. 316–325 (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Arimura, H., Uno, T., Shimozono, S. (2007). Time and Space Efficient Discovery of Maximal Geometric Graphs. In: Corruble, V., Takeda, M., Suzuki, E. (eds) Discovery Science. DS 2007. Lecture Notes in Computer Science(), vol 4755. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75488-6_6
Download citation
DOI: https://doi.org/10.1007/978-3-540-75488-6_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75487-9
Online ISBN: 978-3-540-75488-6
eBook Packages: Computer ScienceComputer Science (R0)