Skip to main content

Complete, Exact and Efficient Implementation for Computing the Adjacency Graph of an Arrangement of Quadrics

  • Conference paper
Algorithms – ESA 2007 (ESA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4698))

Included in the following conference series:

Abstract

We present a complete, exact and efficient implementation to compute the adjacency graph of an arrangement of quadrics, i.e. surfaces of algebraic degree 2. This is a major step towards the computation of the full 3D arrangement. We enhanced an implementation for an exact parameterization of the intersection curves of two quadrics, such that we can compute the exact parameter value for intersection points and from that the adjacency graph of the arrangement. Our implementation is complete in the sense that it can handle all kinds of inputs including all degenerate ones, i.e. singularities or tangential intersection points. It is exact in that it always computes the mathematically correct result. It is efficient measured in running times, i.e. it compares favorably to the only previous implementation.

Project co-funded by the European Commission within FP6 (2002–2006) under contract No. IST-006413.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Proc. 2nd GI Conf. on Automata Theory and Formal Languages. LNCS, vol. 6, pp. 134–183. Springer, Berlin (1975) Reprinted with corrections in: Caviness, B.F., Johnson, J.R. (eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition, pp. 85–121. Springer, Heidelberg (1998)

    Google Scholar 

  2. Schömer, E., Wolpert, N.: An exact and efficient approach for computing a cell in an arrangement of quadrics (Special Issue on Robust Geometric Applications and their Implementations). Computational Geometry: Theory and Applications 33, 65–97 (2006)

    MATH  MathSciNet  Google Scholar 

  3. Mourrain, B., Técourt, J.-P., Teillaud, M.: Sweeping of an arrangement of quadrics in 3D (Special issue, 19th European Workshop on Computational Geometry). Computational Geometry: Theory and Applications 30, 145–164 (2005)

    MATH  MathSciNet  Google Scholar 

  4. Berberich, E., Hemmer, M., Kettner, L., Schömer, E., Wolpert, N.: An exact, complete and efficient implementation for computing planar maps of quadric intersection curves. In: SCG 2005. Proceedings of the twenty-first annual symposium on Computational geometry, pp. 99–106. ACM Press, New York, USA (2005)

    Chapter  Google Scholar 

  5. Dupont, L., Lazard, D., Lazard, S., Petitjean, S.: Near-optimal parameterization of the intersection of quadrics, parts I+II+III (accepted). J. Symbolic Computation  (2007)

    Google Scholar 

  6. Stolfi, J.: Oriented Projective Geometry: A Framework for Geometric Computations. Academic Press, New York (1991)

    MATH  Google Scholar 

  7. Yun, D.Y.Y.: On square-free decomposition algorithms. In: SYMSAC 1976. Proceedings of the third ACM symposium on Symbolic and algebraic computation, pp. 26–35. ACM Press, New York, USA (1976)

    Chapter  Google Scholar 

  8. Eigenwillig, A., Kettner, L., Krandick, W., Mehlhorn, K., Schmitt, S., Wolpert, N.: A descartes algorithm for polynomials with bit-stream coefficients. In: Ganzha, V.G., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2005. LNCS, vol. 3718, pp. 138–149. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Lazard, S., Pearanda, L.M., Petitjean, S.: Intersecting quadrics : An efficient and exact implementation. In: ACM Symposium on Computational Geometry - SoCG 2004, Brooklyn, NY, ACM Press, New York (2004)

    Google Scholar 

  10. Berberich, E., Eigenwillig, A., Hemmer, M., Hert, S., Kettner, L., Mehlhorn, K., Reichel, J., Schmitt, S., Schömer, E., Wolpert, N.: EXACUS: Efficient and exact algorithms for curves and surfaces. In: 13th Annual European Symposium on Algorithms, pp. 155–166. Springer, Heidelberg (2005)

    Google Scholar 

  11. Austern, M.H.: Generic Programming and the STL. Addison-Wesley, Reading (1998)

    Google Scholar 

  12. Brönnimann, H., Kettner, L., Schirra, S., Veltkamp, R.: Applications of the generic programming paradigm in the design of CGAL. In: Jazayeri, M., Musser, D.R., Loos, R.G.K. (eds.) Generic Programming. LNCS, vol. 1766, pp. 206–217. Springer, Heidelberg (2000)

    Google Scholar 

  13. Hemmer, M., Kettner, L., Schömer, E.: Effects of a modular filter on geometric applications. Technical Report ECG-TR-363111-01, MPI Saarbrücken (2004)

    Google Scholar 

  14. Brown, W.S.: The subresultant PRS algorithm. ACM Trans. Math. Softw. 4(3), 237–249 (1978)

    Article  MATH  Google Scholar 

  15. Collins, G.E., Akritas, A.-G.: Polynomial real root isolation using Descartes’ rule of sign. In: SYMSAC, pp. 272–275 (1976)

    Google Scholar 

  16. Bentley, J.L., Ottmann, T.A.: Algorithms for reporting and counting geometric intersections. IEEE Trans. Comput. C-28(9), 643–647 (1979)

    Article  Google Scholar 

  17. Brown, W.S.: On euclid’s algorithm and the computation of polynomial greatest common divisors. J. ACM 18, 478–504 (1971)

    Article  MATH  Google Scholar 

  18. Langemyr, S.M.L.: The computation of polynomial GCD’s over an algebraic number field. J. Symbolic Computation 8, 429–448 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  19. Granados, M., Hachenberger, P., Hert, S., Kettner, L., Mehlhorn, K., Seel, M.: Boolean operations on 3D selective nef complexes: Data structure, algorithms, and implementation. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 654–666. Springer, Heidelberg (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lars Arge Michael Hoffmann Emo Welzl

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dupont, L., Hemmer, M., Petitjean, S., Schömer, E. (2007). Complete, Exact and Efficient Implementation for Computing the Adjacency Graph of an Arrangement of Quadrics. In: Arge, L., Hoffmann, M., Welzl, E. (eds) Algorithms – ESA 2007. ESA 2007. Lecture Notes in Computer Science, vol 4698. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75520-3_56

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75520-3_56

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75519-7

  • Online ISBN: 978-3-540-75520-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics