Abstract
The questions focusing on diminishing returns for additional search effort have been a burning issue in computer chess. Despite a lot of research in this field, there are still some open questions, e.g., what happens at search depths beyond 12 plies, and what is the effect of the program’s knowledge on diminishing returns? The paper presents an experiment that attempts to answer these questions. The results (a) confirm that diminishing returns in chess exist, and more importantly (b) show that the amount of knowledge a program has influences when diminishing returns will start to manifest themselves.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berliner, H., Goetsch, G., Campbell, M., Ebeling, C.: Measuring the Performance Potential of Chess Programs. Artificial Intelligence 43(1), 7–21 (1990)
Haworth, G.: Self Play: Statistical Significance. ICGA Journal 26(2), 115–118 (2003)
Heinz, E.A.: A New Self-Play Experiment in Computer Chess. Technical Report No. 608 (MIT-LCS-TM-608), Laboratory for Computer Science, Massachussetts Institute of Technology, USA (2000)
Heinz, E.A.: New Self-Play Results in Computer Chess. In: Marsland, T., Frank, I. (eds.) CG 2001. LNCS, vol. 2063, pp. 267–282. Springer, Heidelberg (2002)
Heinz, E.A.: Self-Play Experiments in Computer Chess Revisited. In: van den Herik, H.J., Monien, B. (eds.) 9th Advances in Computer Games (ACG9), pp. 73–91. Department of Computer Science, Universiteit Maastricht, Maastricht, The Netherlands (2001)
Heinz, E.A.: Follow-up on Self-play, Deep Search, and Diminishing Returns. ICGA Journal 26(2), 75–80 (2003)
Junghanns, A., Schaeffer, J.: Search Versus Knowledge in Game-Playing Programs Revisited. In: Proceedings of the 15th International Joint Conference on Artificial Intelligence, pp. 692–697. Morgan Kaufmann, San Francisco (1997)
Junghanns, A., Schaeffer, J., Brockington, M., Björnsson, Y., Marsland, T.A.: Diminishing Returns for Additional Search in Chess. In: van den Herik, H.J., Uiterwijk, J.W.H.M. (eds.) 8th Advances in Computer Chess (ACC8), pp. 53–67. Department of Computer Science, University of Maastricht, Maastricht, The Netherlands (1997)
Krabbé, T.: Open Chess Diary (2006), http://www.xs4all.nl/~timkr/chess2/diary.htm
Michie, D.: A Theory of Advice. Machine Intelligence 8, 151–170 (1977)
Sadikov, A.: Propagation of Heuristic Evaluation Errors in Game Graphs. PhD thesis, University of Ljubljana, Faculty of Computer and Information Science (2005)
Sadikov, A., Bratko, I., Kononenko, I.: Bias and Pathology in Minimax Search. Theoretical Computer Science 349(2), 268–281 (2005)
Thompson, K.: Retrograde Analysis of Certain Endgames. ICCA Journal 9(3), 131–139 (1986)
Thompson, K.: 6-Piece Endgames. ICCA Journal 19(4), 215–226 (1996)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sadikov, A., Bratko, I. (2007). Search Versus Knowledge Revisited Again. In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M.(. (eds) Computers and Games. CG 2006. Lecture Notes in Computer Science, vol 4630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75538-8_15
Download citation
DOI: https://doi.org/10.1007/978-3-540-75538-8_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75537-1
Online ISBN: 978-3-540-75538-8
eBook Packages: Computer ScienceComputer Science (R0)