Skip to main content

Combinatorics of Go

  • Conference paper
Computers and Games (CG 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4630))

Included in the following conference series:

Abstract

We present several results concerning the number of positions and games of Go. We derive recurrences for L(m,n), the number of legal positions on an m ×n board, and develop a dynamic programming algorithm which computes L(m,n) in time O(m 3 n 2 λ m) and space O(m λ m), for some constant λ< 5.4. An implementation of this algorithm enables us to list L(n,n) for n ≤ 17. For larger boards, we prove the existence of a base of liberties \(\lim \sqrt[mn]{L(m,n)}\) of ~2.9757341920433572493. Based on a conjecture about vanishing error terms, we derive an asymptotic formula for L(m,n), which is shown to be highly accurate.

We also study the Game Tree complexity of Go, proving an upper bound on the number of possible games of (mn)L(m,n) and a lower bound of \(2^{2^{n^2/2\,-O(n)}}\) on n×nboards and \(2^{2^{n-1}}\) on 1 ×n boards, in addition to exact counts for mn ≤ 4 and estimates up to mn = 9. Most proofs and some additional results had to be left out to observe the page limit. They may be found in the full version available at [8].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blahut, R.E.: Theory and Practice of Error Control Codes. Addison-Wesley, London (1983)

    MATH  Google Scholar 

  2. Chen, P.: Heuristic Sampling: A Method for Predicting the Performance of Tree Searching Programs. SIAM J. Comput. 21(2), 295–315 (1992)

    Article  MATH  Google Scholar 

  3. Crâşmaru, M., Tromp, J.: Ladders are PSPACE-complete. In: Marsland, T., Frank, I. (eds.) CG 2001. LNCS, vol. 2063, pp. 241–249. Springer, Heidelberg (2002)

    Google Scholar 

  4. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics, 2nd edn. Addison-Wesley, London (1994)

    MATH  Google Scholar 

  5. Lichtenstein, D., Sipser, M.: GO is Polynomial-Space Hard. Journal of the ACM 27(2), 393–401 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  6. Robson, J.M.: The Complexity of Go. In: Proc. IFIP (International Federation of Information Processing), pp. 413–417 (1983)

    Google Scholar 

  7. Tromp, J.: The Game of Go (2006), http://www.cwi.nl/~tromp/go.html

  8. Tromp, J.: Number of Legal Go Positions (2006), http://www.cwi.nl/~tromp/go/legal.html

  9. Woeginger, G.: Personal communication

    Google Scholar 

  10. Wolfe, D.: Go endgames are PSPACE-hard. In: Nowakowski, R.J. (ed.) More Games of No Chance, vol. 42, pp. 125–136. MSRI Publications (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

H. Jaap van den Herik Paolo Ciancarini H. H. L. M. (Jeroen) Donkers

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Tromp, J., Farnebäck, G. (2007). Combinatorics of Go. In: van den Herik, H.J., Ciancarini, P., Donkers, H.H.L.M.(. (eds) Computers and Games. CG 2006. Lecture Notes in Computer Science, vol 4630. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75538-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75538-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75537-1

  • Online ISBN: 978-3-540-75538-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics