Abstract
A brief review of the current research on the development of the VINLEN multitask inductive database and decision support system is presented. The aim of this research is to integrate a wide range of knowledge generation operators in one system that given input data and relevant domain knowledge generates new knowledge according to the user’s goal. The central VINLEN operator is natural induction that generates hypotheses from data in the form of attributional rules that resemble natural language expressions, and are easy to understand and interpret. This operator is illustrated by an application to discovering relationships between lifestyles and diseases of men age 50-65 in a large database created by the American Medical Association. The conclusion outlines plans for future research.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blockeel, H.: Experiment Databases: A Novel Methodology for Experimental Research. In: Bonchi, F., Boulicaut, J.-F. (eds.) KDID 2005. LNCS, vol. 3933, pp. 72–85. Springer, Heidelberg (2006)
De Raedt, L.: A Perspective on Inductive Databases. ACM SIGKDD Explorations Newsletter 4(2), 69–77 (2002)
Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an Agent Communication Language. In: Proceedings of the Third International Conference on Information and Knowledge Management, CIKM 1994, pp. 456–463. ACM Press, New York (1994)
Flach, P., Dzeroski, S.: Editorial: Inductive Logic Programming is Coming of Age. Machine Learning 44(3), 207–209 (2001)
Głowiński, C., Michalski, R.S.: Discovering Multi-head Attributional Rules in Large Databases. In: Tenth International Symposium on Intelligent Information Systems, Zakopane, Poland (2001)
Han, J., Kamber, M.: Data Mining – Concepts and Techniques. Morgan Kaufmann, San Francisco (2001)
Hätönen, K., Mika Klemettinen, M., Miettinen, M.: Remarks on the Industrial Application of Inductive Database Technologies. In: Boulicaut, J.-F., De Raedt, L., Mannila, H. (eds.) Constraint-Based Mining and Inductive Databases. LNCS (LNAI), vol. 3848, pp. 196–215. Springer, Heidelberg (2006)
Imieliński, T., Virmani, A.: MSQL: A query language for database mining. Data Mining and Knowledge Discovery 3(4), 373–408 (1999)
Imieliński, T., Mannila, H.: A Database Perspective on Knowledge Discovery. Communications of the ACM 39, 58–64 (1996)
Kaufman, K., Michalski, R.S.: A Knowledge Scout for Discovering Medical Patterns: Methodology and System SCAMP. In: Proceedings of the Fourth International Conference on Flexible Query Answering Systems, FQAS’2000, Warsaw, Poland, pp. 485–496 (2000)
Meo, R., Giuseppe, P., Stefano, C.: An Extension to SQL for Mining Association Rules. Data Mining and Knowledge Discovery V2(2), 195–224 (1998)
Meo, R., Lanzi, P.L., Klemettinen, M. (eds.): Database Support for Data Mining Applications. LNCS (LNAI), vol. 2682. Springer, Heidelberg (2004)
Meo, R., Vernier, F., Barreri, R., Matera, M., Carregio, D.: Applying a Data Mining Query Language to the Discovery of Interesting Patterns in WEB Logs. In: Workshop on Inductive Databases and Constraint Based Mining, Hinterzarten, Germany (2004)
Michalski, R.S.: ATTRIBUTIONAL CALCULUS: A Logic and Representation Language for Natural Induction. Reports of the Machine Learning and Inference Laboratory, MLI 04-2, George Mason University, Fairfax, VA (2004)
Michalski, R.S.: Attributional Ruletrees: A New Representation for AQ Learning. Reports of the Machine Learning and Inference Laboratory, MLI 02-1, George Mason University, Fairfax, VA (October 2002) (slightly updated in May 2004)
Michalski, R.S., Kerschberg, L., Kaufman, K., Ribeiro, J.: Mining For Knowledge in Databases: The INLEN Architecture, Initial Implementation and First Results. Intelligent Information Systems: Integrating Artificial Intelligence and Database Technologies 1(1), 85–113 (1992)
Michalski, R.S., Wojtusiak, J.: Reasoning with Meta-values in AQ Learning. Reports of the Machine Learning and Inference Laboratory, George Mason University, Fairfax, VA (2006)
Seeman, W.D., Michalski, R.S.: The CLUSTER3 System for Goal-oriented Conceptual Clustering: Method and Preliminary Results. In: Proceedings of the Data Mining and Information Engineering Conference, Prague, Czech Republic (2006)
Śnieżyński, B., Szymacha, R., Michalski, R.S.: Knowledge Visualization Using Optimized General Logic Diagrams. In: Proceedings of the Intelligent Information Processing and Web Mining Conference, Gdansk, Poland (2005)
Szydło, T., Śnieżyński, B., Michalski, R.S.: A Rules-to-Trees Conversion in the Inductive Database System VINLEN. In: Proceedings of the Intelligent Information Processing and Web Mining Conference, Gdansk, Poland (2005)
Wojtusiak, J.: AQ21 User’s Guide. Reports of the Machine Learning and Inference Laboratory, MLI 04-3, George Mason University, Fairfax, VA (2004) (updated in September 2005)
Wojtusiak, J., Michalski, R.S.: The LEM3 Implementation of Learnable Evolution Model and Its Testing on Complex Function Optimization Problems. In: Proceedings of Genetic and Evolutionary Computation Conference, Seattle, WA (2006)
Wojtusiak, J., Michalski, R.S., Kaufman, K., Pietrzykowski, J.: The AQ21 Natural Induction Program for Pattern Discovery: Initial Version and its Novel Features. In: Proceedings of the 18th IEEE International Conference on Tools with Artificial Intelligence, Washington D.C., IEEE Computer Society Press, Los Alamitos (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kaufman, K.A., Michalski, R.S., Pietrzykowski, J., Wojtusiak, J. (2007). An Integrated Multi-task Inductive Database VINLEN: Initial Implementation and Early Results. In: Džeroski, S., Struyf, J. (eds) Knowledge Discovery in Inductive Databases. KDID 2006. Lecture Notes in Computer Science, vol 4747. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75549-4_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-75549-4_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75548-7
Online ISBN: 978-3-540-75549-4
eBook Packages: Computer ScienceComputer Science (R0)