
HAL Id: inria-00289541
https://inria.hal.science/inria-00289541

Submitted on 21 Jun 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mechanized verification of CPS transformations
Zaynah Dargaye, Xavier Leroy

To cite this version:
Zaynah Dargaye, Xavier Leroy. Mechanized verification of CPS transformations. Logic for Program-
ming, Artificial Intelligence and Reasoning, 14th Int. Conf. LPAR 2007, Oct 2007, Erevan, Armenia.
pp.211-225, �10.1007/978-3-540-75560-9_17�. �inria-00289541�

https://inria.hal.science/inria-00289541
https://hal.archives-ouvertes.fr

Mechanized Verification of CPS Transformations

Zaynah Dargaye and Xavier Leroy

INRIA Paris-Rocquencourt
B.P. 105, 78153 Le Chesnay, France

Zaynah.Dargaye@inria.fr, Xavier.Leroy@inria.fr

Abstract. Transformation to continuation-passing style (CPS) is
often performed by optimizing compilers for functional programming
languages. As part of the development and proof of correctness of a
compiler for the mini-ML functional language, we have mechanically
verified the correctness of two CPS transformations for a call-by-value
λ-calculus with n-ary functions, recursive functions, data types and
pattern-matching. The transformations generalize Plotkin’s original
call-by-value transformation and Danvy and Nielsen’s optimized trans-
formation, respectively. We used the Coq proof assistant to formalize
the transformations and conduct and check the proofs. Originalities of
this work include the use of big-step operational semantics to avoid
difficulties with administrative redexes, and of two-sorted de Bruijn
indices to avoid difficulties with α-conversion.

1 Introduction

Continuation-passing style (CPS) is a programming style in the λ-calculus and
related functional languages where a function never returns directly the result
of its computations, but instead passes it to another function, the continuation,
received as an extra argument and representing the meaning of the rest of the
program. For instance, the successor function, written λx. x + 1 in direct style,
becomes λx.λk. k(x+1) in continuation-passing style, where k is the continuation
parameter. Programs can be systematically translated to semantically equivalent
programs in CPS using a variety of CPS transformation algorithms (see Sect. 2
for examples).

CPS and the related CPS transformations play an important role in three
domains relevant to programming languages: semantics, programming, and com-
pilation.

As a semantic device, CPS makes it possible to use the pure λ-calculus (with-
out a fixed evaluation strategy) as a meta-language to describe faithfully the
semantics of functional or imperative programming languages. After translation
to CPS, the evaluation strategy of these languages is encoded in the structure of
the resulting λ-term. Additionally, CPS makes it easy to give formal semantics
to advanced control structures such as exceptions, backtracking, coroutines and
control operators.

As a programming device, CPS enables functional programmers to define
advanced, application-specific control structures such as coroutines or non-blind

backtracking. These control structures need not be supported natively by the
programming language.

As a compilation device, programs in CPS lend themselves to aggressive op-
timizations that are significantly harder to perform on direct-style programs.
CPS has several features that facilitate optimizations: all intermediate results
are named, and compile-time β-reductions are always semantically valid. Sev-
eral optimizing compilers for functional languages, such as Orbit Scheme [15],
Standard ML of New Jersey [2], and SML.NET [13], use CPS as an intermediate
language.

In this paper, we describe the formal verification, using the Coq proof as-
sistant [7, 4], of the correctness (semantic preservation) of two CPS transfor-
mations for a realistic, pure, call-by-value functional language. This language
features n-ary functions, recursive functions, and ML/Haskell-style data types
and pattern-matching. The two CPS transformations are extensions of Plotkin’s
original call-by-value transformation [22] and Danvy and Nielsen’s optimized
transformation [8, 9], respectively.

This work is part of a larger project that aims at mechanically verifying the
correctness of a whole compiler for mini-ML, a pure, call-by-value functional
language rich enough to be used as a target language for automatic extraction
of functional programs from Coq specifications [19]. In a context where formal
methods are increasingly being applied to critical software, it becomes important
to guarantee that compilers preserve the semantics of the programs they com-
pile: a bug in a compiler could result in incorrect executable code being produced
from correct, formally verified source programs. One way to obtain this guaran-
tee is to formally verify the compiler itself, using theorem provers to prove that
it is correct, i.e. preserves the semantics of source programs. Several non-trivial
compilers have been formally verified along these lines, for assembly languages
[21], imperative languages [16, 18, 5], object-oriented languages [14] and func-
tional languages [6]. The work presented here is part of the development and
verification of a front-end compiler from mini-ML to the Cminor intermediate
language [18]. Our long-term plan is to combine this front-end with the veri-
fied back-end for Cminor described in [18] and with a future verification of the
extraction mechanism from Coq functional specifications to mini-ML to obtain
a trusted execution path for programs directly written in the Coq specification
language.

Related Work

Many on-paper proofs of correctness for various CPS transformations have been
published already, starting with Plotkin’s seminal article [22]. We are aware of
three earlier on-machine formalizations and correctness proofs for CPS transfor-
mations: one by Minamide and Okuma [20], using Isabelle/HOL; one by Tian
[24], using Twelf; and one by Chlipala [6], using Coq.

A recurring difficulty in mechanizing programming language semantics, type
systems and program transformations is the handling of binders and α-conversion

(the fact that λx.x and λy.y are equivalent terms). Most existing proof assistants
provide no native support for working with terms modulo α-conversion like we
routinely do on paper. (The only exception is Urban’s Isabelle/HOL implemen-
tation of nominal logic [25].) The POPLmark challenge [3] gives an excellent
summary of the difficulties this raises when mechanizing properties of program-
ming languages and of the known techniques to circumvent these difficulties: de
Bruijn indices, higher-order abstract syntax, locally nameless representations, . . .
In the case of CPS transformations, Minamide and Okuma use named variables
with no α-conversion for Plotkin’s naive CPS transformation, and with explicit
renamings for Danvy and Nielsen’s optimized transformation. Tian uses higher-
order abstract syntax to reason about Danvy and Nielsen’s CPS transformation.
Like Chlipala, we use de Bruijn indices [11] to provide unique representatives for
λ-terms. We avoid some of the difficulties associated with standard de Bruijn
indices by using two kinds of de Bruijn indices, independently numbered: one
for source variables and one for continuation variables introduced by the CPS
transformation.

Earlier work also differs on the kind of operational semantics used to prove
the correctness of CPS transformations. Following Plotkin’s original proof, Mi-
namide and Okuma use small-step semantics, while Tian uses a combination of
big-step semantics and small-step semantics for the source and target languages,
respectively, and Chlipala uses a form of denotational semantics directed by the
types of the simply-typed λ-calculus. We use (untyped) big-step semantics for
the source and target languages. A strength of big-step semantics is that it avoids
the well-known difficulties caused by administrative redexes in Plotkin’s origi-
nal, small-step proof of CPS transformations. A weakness of big-step semantics
is that it captures only terminating executions, and therefore cannot be used
to prove semantic preservation for diverging source programs. This limitation
is unproblematic in our intended usage scenario, since programs extracted from
Coq functional specifications are strongly normalizing.

Finally, earlier mechanizations handle only the pure λ-calculus, while we
cover a larger, more realistic functional language including n-ary functions, re-
cursive functions, data types and pattern-matching. These extensions are con-
ceptually easy but technically not entirely obvious. Mechanizing the correctness
proof is especially useful to ensure that we do not overlook the small difficulties
raised by these extensions.

Outline

The remainder of this paper is organized as follows. Section 2 reviews some of the
known CPS transformations. Section 3 defines the source and target languages
for our transformations. We define and outline the correctness proof of two CPS
transformations in Sect. 4 and 5. Section 6 gives some practical information on
the Coq mechanization of these results. Concluding remarks are given in Sect. 7.

2 Examples of CPS Transformations

We start by reviewing some of the many known variants of CPS transformation
for call-by-value λ-calculus. One of the earliest and simplest transformations is
that of Plotkin [22]:

[[x]]1 = λk. k x

[[λx.M]]1 = λk. k (λx. [[M]]1)

[[M N]]1 = λk. [[M]]1 (λm. [[N]]1 (λn. m n k))

Each source term is transformed into an abstraction λk . . . over the continua-
tion for this term. A weakness of this transformation is that it generates many
administrative redexes, that is, β-redexes that correspond to no redex in the orig-
inal source term. For instance, the translation of x y contains four such redexes,
outlined below:

[[x y]]1 = λk. (λk. k x) (λm. (λk. k y) (λn. m n k))

β
→ λk. (λm. (λk. k y) (λn. m n k)) x

β
→ λk. (λk. k y) (λn. x n k)

β
→ λk. (λn. x n k) y

β
→ λk. x y k

When CPS transformation is used as part of a compiler, these administrative re-
dexes introduce inefficiencies that must be eliminated by a later pass of compile-
time β-reduction.

The following variant of Plotkin’s transformation avoids the generation of
some, but not all administrative redexes. Here, instead of λ-abstracting over the
continuation variable k, we turn k into an additional parameter of the (mathe-
matical) function that defines the translation. The translation therefore becomes
[[M]]2 ✄ k where M is the source term and k a continuation term.

[[x]]2 ✄ k = k x

[[λx.M]]2 ✄ k = k (λx.λk. [[M]]2 ✄ k)

[[M N]]2 ✄ k = [[M]]2 ✄ λm. [[N]]2 ✄ λn. m n k

We now have [[x y]]2 ✄ k = (λm. (λn. m n k) y) x, which contains only two
administrative β-redexes.

Danvy and Nielsen [8] present the following refinement of the two-place trans-
lation above that avoids generating any administrative redex. It distinguishes λ-
terms that are atoms A,B ::= x | λx.M from the other λ-terms P,Q ::= M N .
The transformation is presented as two mutually recursive functions, Ψ3(A) for
atoms A and [[M]]3 ✄ k for arbitrary terms M .

[[A]]3 ✄ k = k Ψ3(A) Ψ3(x) = x

[[A B]]3 ✄ k = Ψ3(A) Ψ3(B) k Ψ3(λx.M) = λx.λk. [[M]]3 ✄ k

[[P B]]3 ✄ k = [[P]]3 ✄ λp. p Ψ3(B) k

[[A Q]]3 ✄ k = [[Q]]3 ✄ λq. Ψ3(A) q k

[[P Q]]3 ✄ k = [[P]]3 ✄ λp. [[Q]]3 ✄ λq. p q k

We now have [[x y]]3✄k = x y k, as desired. However, the case for applications was
split in 4 different cases, depending on whether the function and its argument
are atoms or not. This combinatorial explosion makes it difficult to extend this
transformation to n-ary function applications and data constructor applications.

To circumvent this difficulty, we use (in Sect. 5) the following alternate pre-
sentation of Danvy and Nielsen’s transformation. We define the “smart applica-
tion” constructor @β that reduces (on the fly) administrative redexes that would
arise if the first argument is a lambda-abstraction and the second argument is
an atom:

(λx.M) @β A = M{x← A} M @β N = M N otherwise

We then use @β instead of regular applications in the variable and abstraction
cases of the translation [[M]]2 ✄ k, obtaining:

[[x]]4 ✄ k = k @β x

[[λx.M]]4 ✄ k = k @β (λx.λk. [[M]]4 ✄ k)

[[M N]]4 ✄ k = [[M]]4 ✄ λm. [[N]]4 ✄ λn. m n k

We have [[x y]]4 ✄ k = (λm. (λn. m n k) @β y) @β x = x y k as expected.
More generally, this transformation is extensionally equivalent to that of Danvy
and Nielsen: [[M]]4 ✄ k = [[M]]3 ✄ k if k is a λ-abstraction. Therefore, just like
Danvy and Nielsen’s transformation, it produces CPS terms that are free of
administrative redexes.

3 Source and Target Languages

The source language for the CPS transformation has the following grammar:1

Source terms:
M,N,P ::= x0 | x1 | . . . variables (de Bruijn)

| λn. M function of n + 1 arguments
| µn. M recursive function (n + 1 args.)
|M(N1, . . . , Nk) function application
| let M in N bind x0 to M in N

| C(N1, . . . , Nk) data constructor application
| match M with π1, . . . , πk pattern-matching

Match cases:
π ::= Cn →M n is the arity of constructor C

Variables xi are identified by their de Bruijn indices i. Indices start at 0. The
abstraction λn. M has arity n+1; it binds variables xn, . . . , x0 in M . A recursive
abstraction µn. M is similar, but in addition xn+1 is bound within M to the
abstraction itself. In the right-hand side M of a match case Cn →M , variables
xn−1, . . . , x0 are bound to the n arguments of the matched constructor C.

1 Our Coq development also supports numeric constants and arithmetic and relational
operators over numbers. These are omitted in this paper for brevity.

λn. M ⇒ λn. M µn. M ⇒ µn. M

M ⇒ λn. P Ni ⇒ vi P{vn, . . . , v0} ⇒ v

M(N0, . . . , Nn) ⇒ v

M ⇒ µn. P Ni ⇒ vi P{vn, . . . , v0, µ
n. P} ⇒ v

M(N0, . . . , Nn) ⇒ v

M ⇒ v1 N{v1} ⇒ v

(let M in N) ⇒ v

M ⇒ C(v1, . . . , vn) πi = (Cn → N) N{vn, . . . , v1} ⇒ v

(match M with π1, . . . , πk) ⇒ v

Fig. 1. Big-step semantics for the source language

The dynamic semantics of this language is given in big-step operational style
by the rules in Fig. 1. The rules define the predicate M ⇒ v, “the term M

evaluates to the value v”. Values are

v ::= λn. M | µn. M | C(v1, . . . , vn).

We write M{N0, . . . , Nk} for the simultaneous substitution of terms N0, . . . , Nk

for variables x0, . . . , xk in term M . Note the two rules for function applica-
tion M(N0, . . . , Nn), depending on whether M evaluates to a recursive or non-
recursive abstraction. In the evaluation rule for the match construct, the selected
case πi is the first case that matches constructor C with arity n.

The target language for the CPS transformation is similar, except that it has
two kinds of variables, independently numbered by de Bruijn indices: variables
xn correspond to variables already present in the source term, while variables
κn correspond to variables introduced by the transformation to hold continua-
tions and intermediate evaluation results. The grammar of the target language
is therefore:

Target terms:
M ′, N ′, P ′ ::= xn source-level variables

| κn continuation variables
| λn. M ′ function of n + 1 arguments
| µn. M ′ recursive function (n + 1 args.)
|M ′(N ′

1, . . . , N
′
k) function application

| let M ′
in N ′ bind x0 to M in N

| C(N ′
1, . . . , N

′
k) data constructor application

| match M ′
with π′

1, . . . , π
′
k pattern-matching

Match cases:
π′ ::= Cn →M ′ n is the arity of constructor C

Conventionally, every function takes its continuation as first argument. There-
fore, in λn.M ′, the first argument is bound to κ0 in M ′, and the remaining n

arguments are bound to xn−1, . . . , x0. For a recursive abstraction µn.M ′, the

λn. M ′ ⇒ λn. M ′ µn. M ′ ⇒ µn. M ′

M ′ ⇒ λn. P ′ N ′

i ⇒ vi P ′{v0}{vn, . . . , v1} ⇒ v

M ′(N ′

0, . . . , N
′

n) ⇒ v

M ′ ⇒ µn. P N ′

i ⇒ vi P ′{v0}{vn, . . . , v1, µ
n. P ′} ⇒ v

M ′(N ′

0, . . . , N
′

n) ⇒ v

M ′ ⇒ v1 N ′{ }{v1} ⇒ v

(let M ′ in N ′) ⇒ v

M ′ ⇒ C(v1, . . . , vn) π′

i = (Cn → N ′) N ′{ }{vn, . . . , v1} ⇒ v

(match M ′ with π′

1, . . . , π
′

k) ⇒ v

Fig. 2. Big-step semantics for the target language

variable xn is additionally bound to the abstraction itself. Match cases and the
let binding bind source-level variables xn exactly as in the source language.

The reason why we use two kinds of de Bruijn indices is to simplify the
definition of CPS transformations. As observed by Minamide and Okuma [20],
if regular de Bruijn indices are used, the transformations need to shift indices
of source-level variables to reflect the additional bindings that it inserts. For
instance, the naive CPS transformation of xi xj in regular de Bruijn notation is

λ0. (λ0. x0(xi+2)) (λ0. (λ0. x0(xj+3)) (λ0. x1(x2, x0)))

where the indices i and j of the two source variables are shifted by 2 and 3,
respectively. This shifting makes it delicate to define and reason about CPS
transformations. Using two kinds of variables avoids this difficulty: the CPS
transformation of xi xj is, then,

λ0. (λ0. κ0(xi)) (λ0. (λ0. κ0(xj)) (λ0. κ1(κ2, κ0)))

The source variables xi and xj need not be shifted because all bindings intro-
duced by the translation bind continuation variables κ0, κ1, . . . but not source
variables.

Figure 2 defines the big-step semantics for the target language. The
evaluation rules are direct adaptations of those for the source language. We
write M{N0, . . . , Nn}{P0, . . . , Pp} for the double simultaneous substitution of
terms N0, . . . , Nn for variables κ0, . . . , κn and of terms P0, . . . , Pp for variables
x0, . . . , xp in term M .

As the semantics use substitution, we will need some standard properties
over substitution and the lifting operation such as commutation between lifting
and substitution, or neutrality of substitution over closed terms.

The ⇑ operator denotes lifting of free de Bruijn indices: ⇑n
x M ′ replaces all xi

variables free in M ′ by xi+n, and similarly ⇑n
κ M ′ replaces all κi variables free

in M ′ by κi+n.

The following two lemmas about compositions of substitutions play a crucial
role in proving semantic preservation for the CPS transformation.

Lemma 1. (M{ ~N}{~P}){ ~Q}{~R} = (M{⇑
| ~N |
κ ⇑

|~P |
x

~Q}{⇑
| ~N |
κ ⇑

|~P |
x

~R}){ ~N}{~P}

Lemma 2. (M{⇑
| ~N |
κ ⇑

|~P |
x

~Q}{⇑
| ~N |
κ ⇑

|~P |
x

~R}){ ~N}{~P} = M{ ~N, ~Q}{~P , ~R}

4 Verification of a Non-optimizing CPS Transformation

The non-optimizing CPS transformation for our source language is a straightfor-
ward extension of Plotkin’s original call-by-value CPS transformation. We define
two mutually recursive transformations, Ψ for atoms and [[·]] for arbitrary terms.
Atoms are defined by the following grammar:

Atoms: A ::= xn | λ
n. M | µn. M | C(A1, . . . , An)

The transformation is defined by the following equations:

Ψ(xn) = xn

Ψ(λn. M) = λn+1. [[M]](κ0)

Ψ(µn. M) = µn+1. [[M]](κ0)

Ψ(C(A1, . . . , An)) = C(Ψ(A1), . . . , Ψ(An))

[[A]] = λ0. κ0(Ψ(A))

[[M(N1, . . . , Nn)]] = λ0. [[M.N1 . . . Nn then κn(κn+1, κn−1, . . . , κ0)]]

[[let M in N]] = λ0. [[M]](λ0. let κ0 in [[N]](κ1))

[[C(N1, . . . , Nn)]] = λ0. [[N1 . . . Nn then κn(C(κn−1, . . . , κ0)]]

if C(N1, . . . , Nn) is not an atom

[[match M with π1, . . . , πn]] = λ0. [[M]](λ0. match κ0 with [[π1]], . . . , [[πn]])

[[M1 . . .Mn then N ′]] = [[M1]](λ
0. . . . [[Mn]](λ0. N ′) . . .)

[[Cn →M]] = Cn → [[M]](κ1)

The translation [[M]] of a source term M is always a one-argument abstrac-
tion λ0 . . . that will receive the current continuation and bind it to variable κ0.
A source function of arity n + 1 becomes a function of arity n + 2 that expects
the continuation of the call as first argument (bound to variable κ0), along with
n + 1 regular arguments (bound to variables xn, . . . , x0). For n-ary applications
of functions and constructors, we use an auxiliary transformation for lists of
expressions, written [[M1 . . .Mn then N ′]]. The generated term evaluates the
translations [[M1]], . . . , [[Mn]] and binds them to κn−1, . . . , κ0 (respectively) be-
fore evaluating N ′. In the case of a function application M(N1, . . . , Nn), we
translate the list M.N1 . . . Nn and finish with κn bound to the translation of M ,
κn−1, . . . , κ0 bound to the translations of N1, . . . , Nn, and κn+1 bound to the

outer continuation for the application. We therefore finish the computation by
evaluating κn(κn+1, κn−1, . . . , κ0).

The case of a constructor application is similar. However, if all arguments
to the constructor are atoms, the constructor application itself is an atom and
we force it to be translated as such. This not only improves the efficiency of
the generated CPS term, but more importantly this is necessary for the proof of
correctness to go through.

The CPS transformation satisfies the following syntactic properties, which
play a crucial role in the proof of semantic preservation. We say that a term is
κ-closed if no κi variables appear free in this term.

Lemma 3. [[M]] and Ψ(A) are κ-closed. As a corollary, transformed terms are
invariant by substitution of κ-variables:

[[M]]{ ~N}{~P} = [[M]]{ }{~P}

Proof. By structural induction over M and A. For the n-ary applications, notice
that κi is free in [[M1 . . .Mn then N ′]] only if κi+n is free in N ′.

Lemma 4. The transformation commutes with substitution of atoms for x-
variables:

[[M{A1, . . . , An}]] = [[M]]{ }{Ψ(A1) . . . Ψ(An)}

Ψ(A{A1, . . . , An}) = Ψ(A){ }{Ψ(A1) . . . Ψ(An)}

Proof. By structural induction over M and A. Notice that atoms are stable by
substitution: A{A1, . . . , An} is an atom whenever A,A1, . . . , An are atoms.

To show that the CPS transformation preserves the semantics of the source
program, we would like to show that if the source program P evaluates to the
value v, then the CPS program [[P]] applied to the initial continuation λ0. κ0

(the identity function) evaluates to the value Ψ(v), which has the same shape
as v and differs only on the bodies of functions contained in v. Of course, this
result cannot be proved by induction over P : we need to generalize the result to
continuations other than the initial continuation.

The intuition for this generalization is simple: if M ⇒ v, the intended effect
for the transformation [[M]] applied to a continuation K is to compute the value
Ψ(v), then apply K to this value. Therefore, whenever K Ψ(v) ⇒ v′, it should
be the case that [[M]](K)⇒ v′.

Lemma 5. Let K = λ0.P be a κ-closed, one-argument abstraction of the target
language. If M ⇒ v in the source language, and P{Ψ(v)}{ } ⇒ v′ in the target
language, then [[M]](K)⇒ v′ in the target language.

Proof. The proof proceeds by induction on the evaluation derivation of M ⇒ v

and case analysis over the term M . To give an idea of the proof, we sketch one
case of intermediate difficulty: the case where M = let M1 in M2. We have
M1 ⇒ v1 and M2{v1} ⇒ v. We need to show

(λ0. [[M1]](λ
0. let κ0 in [[M2]](κ1))) (K)⇒ v′ (1)

under the assumptions that K = λ0.P , K is κ-closed, and P{Ψ(v)}{ } ⇒ v′.
Applying the induction hypothesis to the second premise M2{v1} ⇒ v and

the continuation K, we obtain:

[[M2{v1}]](K)⇒ v′ (2)

By Lemma 4 and the fact that v1 is a value and therefore also an atom, (2) is
equivalent to:

([[M2]]{ }{Ψ(v1)})(K)⇒ v′ (3)

Take P1 = let κ0 in [[M2]](⇑
1
x K). By the evaluation rule for let, Lemma 3,

and some calculation over substitutions, (3) implies

P1{Ψ(v1)}{ } ⇒ v′ (4)

The expected result (1) follows from (4) and the induction hypothesis applied to
the first premise M1 ⇒ v1 and to the continuation K1 = λ0.P1, which is κ-closed
by Lemma 3.

Theorem 1. If M ⇒ v in the source language, then [[M]](λ0. κ0) ⇒ Ψ(v) in
the target language. Moreover, if v is a first-order data structure (composed of
constructors, but containing no function abstractions), then [[M]](λ0. κ0)⇒ v in
the target language.

Proof. We apply Lemma 5 to the initial continuation K = λ0. κ0, obtaining
[[M]](λ0. κ0) ⇒ Ψ(v). For the corollary, we observe that Ψ(v) = v for any first-
order data structure v.

5 Verification of an Optimizing CPS Transformation

We now define an optimized CPS transformation that does not generate admin-
istrative redexes. This transformation generalizes transformation [[·]]4 ✄ · from
Sect. 2, namely the transformation of Danvy and Nielsen [8, 9] presented using
a “smart application” constructor @β . This constructor is defined over terms of
the target language by

(λ0.M) @β A = M{A}{ } M @β N = M(N) otherwise

The optimizing transformation is presented as two mutually recursive functions,
a one-place function Ψ for atoms and a two-place function [[·]] ✄ · for arbitrary
terms.

Ψ(xn) = xn

Ψ(λn. M) = λn+1. [[M]] ✄ κ0

Ψ(µn. M) = µn+1. [[M]] ✄ κ0

Ψ(C(A1, . . . , An)) = C(Ψ(A1), . . . , Ψ(An))

[[A]] ✄ k = k @β Ψ(A)

[[M(N1, . . . , Nn)]] ✄ k = [[M.N1 . . . Nn then κn(⇑n+1
κ k, κn−1, . . . , κ0)]]

[[let M in N]] ✄ k = [[M]] ✄ λ0. let κ0 in [[N]]✄ ⇑1
κ⇑

1
x k

[[C(N1, . . . , Nn)]] ✄ k = [[N1 . . . Nn then ⇑n
κ k(C(κn−1, . . . , κ0)]]

if C(N1, . . . , Nn) is not an atom

[[match M with π1, . . . , πn]] ✄ k = [[M]] ✄ λ0. match κ0 with

[[π1]] ✄ k, . . . , [[πn]] ✄ k

[[M1 . . .Mn then N ′]] = [[M1]] ✄ λ0. . . . [[Mn]] ✄ λ0. N ′

[[Cn →M]] ✄ k = Cn → [[M]]✄ ⇑1
κ k

To show that the optimizing CPS transformation preserves semantics, we
would like to prove an analogue of Theorem 1: if M ⇒ v and v is a first-order
data structure, then [[M]] ✄ λ0. κ0 ⇒ v. However, a direct proof of this theorem
in the style of Lemma 5 is difficult. The root of the problem is that the “smart
application” @β does not commute with substitutions. For example,

(x0 @β C){x0 ← λ0. κ0} = (x0(C)){x0 ← λ0. κ0} = (λ0. κ0)(C)

while

(x0{x0 ← λ0. κ0}) @β (C{x0 ← λ0. κ0}) = (λ0. κ0) @β C = C

Consequently, the optimizing transformation does not commute with substitu-
tions of atoms for x-variables, as was the case for the non-optimizing transfor-
mation (Lemma 4).

To avoid these difficulties, we do not attempt to directly prove the correctness
of the optimizing transformations, but instead show a semantic equivalence result
between the naive and the optimizing transformations. This equivalence builds
on the intuition that [[M]] ✄ k is identical to [[M]](k) modulo the contraction of
some administrative redexes. These contractions are instances of βv reductions:

(λ0. M)(A)→M{A}{ } (βv)

where the argument A must be an atom. It is well known that βv reductions are
valid in call-by-value semantics [22].

We first formally define parallel βv reduction between terms of the target
language. This parallel reduction relation, written ❀, is defined by the inference
rules in Fig. 3. The first rule corresponds to one βv reduction. The other rules
build the congruence closure of this reduction, enabling zero, one or several βv

redexes to be reduced simultaneously at any position in the term. The reflexive
transitive closure of ❀ is written

∗
❀.

We then formalize the intuition that the term [[M]] ✄ K can be obtained by
contracting βv redexes in the term [[M]](K).

Lemma 6. For all atoms A, Ψ(A)
∗
❀ Ψ(A). For all terms M and continuations

K1 and K2, if K1

∗
❀ K2 and K1 is an atom, then [[M]]K1

∗
❀ [[M]] ✄ K2.

A1 ❀ A2 A1 is an atom M ❀ N

(λ0. M) A1 ❀ N{A2}{ }

xi ❀ xi κi ❀ κi

M ❀ N

λn. M ❀ λn. N

M ❀ N

µn. M ❀ µn. N

M ❀ N M1 ❀ N1 . . . Mn ❀ Nn

M(M1, . . . , Mn) ❀ N(N1, . . . , Nn)

M1 ❀ N1 M2 ❀ N2

(let M1 in M2) ❀ (let N1 in N2)

M1 ❀ N1 . . . Mn ❀ Nn

C(M1, . . . , Mn) ❀ C(N1, . . . , Nn)

M ❀ N π1 ❀ π′

1 . . . πn ❀ π′

n

(match M with π1 . . . πn) ❀ (match M with π′

1 . . . π′

n)

M ❀ N

Cn → M ❀ Cn → N

Fig. 3. Definition of the parallel βv reduction ❀

Proof. By structural induction over A and M .

We then show that the ❀ relation preserves semantics, in the following sense:

Lemma 7. If M ⇒ v and M ❀ N , then there exists a value w such that N ⇒ w

and v ❀ w.

Proof. By induction on the derivation of M ⇒ v. We use the following substi-
tution lemma: if M1 ❀ M2, ~N ❀ ~Q and ~P ❀ ~R where ~N and ~P are lists of
values, then M1{ ~N}{~P}❀ M2{ ~Q}{~R}.

Combining these results, we obtain the correctness of the optimizing CPS
transformation.

Theorem 2. If M ⇒ v in the source language, there exists a value w such that
Ψ(v)

∗
❀ w and [[M]] ✄ λ0. κ0 ⇒ w in the target language. Moreover, if v is a

first-order data structure, then [[M]] ✄ λ0. κ0 ⇒ v in the target language.

Proof. By Theorem 1, we know that [[M]](λ0. κ0)⇒ Ψ(v). Lemma 6 shows that

[[M]](λ0. κ0)
∗
❀ [[M]] ✄ λ0. κ0. Applying Lemma 7 repeatedly, we obtain the

desired value w. If, moreover, v is a first-order data structure, then Ψ(v) = v,

and v
∗
❀ w implies w = v by definition of the ❀ relation.

6 The Coq Development

The Coq mechanization of the results presented here is mostly standard. The
CPS transformations, as well as the substitution and lifting operations, are pre-
sented as structural recursive functions. An advantage of this style is that Coq’s
extraction mechanism can generate executable Caml code directly from these

functional specifications — there is no need to manually implement these func-
tions in a programming language. Coq puts strong syntactic restrictions on re-
cursive functions to ensure that they always terminate. As presented in Sect. 4
and 5, our transformations violate these restrictions; we had to locally expand
the transformations of values and lists at point of use in the transformations
of general terms. The operational semantics for the languages are presented as
inductive predicates where each constructor corresponds exactly to one inference
rule in Fig. 1 and 2.

Concerning the integration of the CPS transformations into the mini-ML to
Cminor compiler that we are developing and verifying, only the optimizing CPS
transformation of Sect. 5 is actually used in the compiler. The naive transforma-
tion of Sect. 4 appears only as an intermediate step in its proof of correctness.

In the compiler chain, CPS transformation comes after an uncurrying opti-
mization (described in [10]) and before closure conversion. The output language
of the uncurrying pass, and the input language of the closure conversion pass,
are identical to the source language of the CPS transformations as defined in
Sect. 3. However, the correctness proofs of these passes are conducted against
a big-step semantics for this language that uses environments and closures in-
stead of simultaneous substitutions. To resolve these mismatches between the
CPS transformation and the surrounding passes, we also formalized and proved
correct a translation from the CPS target language (with two kinds of de Bruijn
indices) back to the CPS source language (with a single kind of indices), as well
as a semantic equivalence result between substitution-based and environment-
based semantics.

The whole development took about 4 person.months and represents approx-
imately 9000 lines of Coq, decomposed as follows:

Specifications Proofs

Languages and their semantics (Sect. 3) 624 lines —
Substitutions and their properties 447 lines 1 685 lines
Non-optimizing CPS transformation (Sect. 4) 609 lines 1 676 lines
Parallel βv reductions (Sect. 5) 413 lines 689 lines
Optimizing CPS transformation (Sect. 5) 113 lines 237 lines
Connecting uncurrying with CPS transformation 303 lines 516 lines
Connecting CPS transformation with closure conversion 644 lines 803 lines

Among the specifications, only 300 lines correspond to definitions of exe-
cutable functions which will be integrated into the compiler itself after extrac-
tion.

As usual with mechanizations using de Bruijn indices, the definitions of sub-
stitution and lifting plus the proofs of their properties take up a large part of
our development. Finding the correct statements of these properties is now well
understood in the case of elementary substitutions, but required some trial and
error in the case of simultaneous substitutions. The theory of the λσ-calculus [1]
helped us find the correct statements before attempting to prove them. Their
proofs are large but mostly routine. We were able to partially automate these
proofs using special-purpose tactics defined within Coq’s ltac language.

7 Conclusions

The work presented in this paper shows that an optimizing CPS transformation
defined for a realistic core functional language can be, with some effort, me-
chanically proved correct using a proof assistant. Our mechanization uses only
elementary techniques (no higher-order abstract syntax, no nominal logic) and
should therefore be adaptable to most proof assistants. We used several non-
standard technical devices: de Bruijn notation with two kinds of indices; proving
the CPS transformation against big-step operational semantics instead of small-
step semantics; and proving the optimizing transformation by reduction to the
non-optimizing one. These devices do not significantly reduce the overall size of
the proof, but enable us to decompose it into mostly-independent sub-proofs of
more manageable size. For instance, using two kinds of indices requires an addi-
tional transformation and a separate correctness proof for it, but minimizes the
amount of index management performed during CPS transformation and keeps
its correctness proof simple.

A natural extension of this work is to mechanically verify the correctness
of transformations to A-normal forms [12] and monadic normal forms [23], two
intermediate representations that share many of the features of CPS. We have
not attempted to do so, but believe that the techniques presented here could be
effective in these other settings.

Although the intended use for our mini-ML compiler is to compile strongly
normalizing programs, it would be interesting to try to prove the correctness
of CPS transformations for diverging programs using the co-inductive big-step
semantics of [17].

Another direction for further work is to investigate the usability of Urban’s
Isabelle/HOL implementation of nominal logic [25] for proving the correctness
of CPS transformations.

References

1. M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions. Journal
of Functional Programming, 1(4):375–416, 1991.

2. A. W. Appel. Compiling with continuations. Cambridge University Press, 1992.

3. B. E. Aydemir, A. Bohannon, M. Fairbairn, J. N. Foster, B. C. Pierce, P. Sewell,
D. Vytiniotis, G. Washburn, S. Weirich, and S. Zdancewic. Mechanized metatheory
for the masses: The POPLmark challenge. In Int. Conf. on Theorem Proving
in Higher Order Logics (TPHOLs), volume 3603 of Lecture Notes in Computer
Science, pages 50–65. Springer-Verlag, 2005.

4. Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development
– Coq’Art: The Calculus of Inductive Constructions. EATCS Texts in Theoretical
Computer Science. Springer-Verlag, 2004.

5. S. Blazy, Z. Dargaye, and X. Leroy. Formal verification of a C compiler front-
end. In FM 2006: Int. Symp. on Formal Methods, volume 4085 of Lecture Notes
in Computer Science, pages 460–475. Springer-Verlag, 2006.

6. A. Chlipala. A certified type-preserving compiler from lambda calculus to assembly
language. In Programming Language Design and Implementation 2007, pages 54–
65. ACM Press, 2007.

7. Coq development team. The Coq proof assistant. Software and documentation
available at http://coq.inria.fr/, 1989–2007.

8. O. Danvy and L. R. Nielsen. A first-order one-pass CPS transformation. Theoretical
Computer Science, 308(1-3):239–257, 2003.

9. O. Danvy and L. R. Nielsen. CPS transformation of beta-redexes. Information
Processing Letters, 94(5):217–224, 2005.

10. Z. Dargaye. Décurryfication certifiée. In Journées Francophones des Langages
Applicatifs (JFLA’07). INRIA, 2007.

11. N. G. de Bruijn. Lambda-calculus notation with nameless dummies, a tool for
automatic formula manipulation, with application to the Church-Rosser theorem.
Indag. Math., 34(5):381–392, 1972.

12. C. Flanagan, A. Sabry, B. Duba, and M. Felleisen. The essence of compiling with
continuations. In Programming Language Design and Implementation 1993, pages
237–247. ACM Press, 1993.

13. A. Kennedy. Compiling with continuations, continued. In International Conference
on Functional Programming 2007. ACM Press, 2007.

14. G. Klein and T. Nipkow. A machine-checked model for a Java-like language,
virtual machine and compiler. ACM Transactions on Programming Languages and
Systems, 28(4):619–695, 2006.

15. D. Kranz, N. Adams, R. Kelsey, J. Rees, P. Hudak, and J. Philbin. ORBIT:
an optimizing compiler for Scheme. In SIGPLAN ’86 symposium on Compiler
Construction, pages 219–233. ACM Press, 1986.

16. D. Leinenbach, W. Paul, and E. Petrova. Towards the formal verification of a C0
compiler: Code generation and implementation correctness. In Int. Conf. on Soft-
ware Engineering and Formal Methods (SEFM 2005), pages 2–11. IEEE Computer
Society Press, 2005.

17. X. Leroy. Coinductive big-step operational semantics. In European Symposium on
Programming (ESOP 2006), volume 3924 of Lecture Notes in Computer Science,
pages 54–68. Springer-Verlag, 2006.

18. X. Leroy. Formal certification of a compiler back-end, or: programming a compiler
with a proof assistant. In 33rd symposium Principles of Programming Languages,
pages 42–54. ACM Press, 2006.

19. P. Letouzey. A new extraction for Coq. In Types for Proofs and Programs, Work-
shop TYPES 2002, volume 2646 of Lecture Notes in Computer Science, pages
200–219. Springer-Verlag, 2003.

20. Y. Minamide and K. Okuma. Verifying CPS transformations in Isabelle/HOL.
In MERLIN ’03: Proc. workshop on Mechanized reasoning about languages with
variable binding, pages 1–8. ACM Press, 2003.

21. J. S. Moore. Piton: a mechanically verified assembly-language. Kluwer, 1996.
22. G. D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theoretical

Computer Science, 1(2):125–159, 1975.
23. A. Sabry and P. Wadler. A reflection on call-by-value. ACM Transactions on

Programming Languages and Systems, 19(6):916–941, 1997.
24. Y. H. Tian. Mechanically verifying correctness of CPS compilation. In CATS ’06:

Proceedings of the 12th Computing: The Australasian Theory Symposium, pages
41–51. Australian Computer Society, 2006.

25. C. Urban. Nominal techniques in Isabelle/HOL. Journal of Automated Reasoning,
2007. To appear.

