Skip to main content

Experiments on the Linear Algebra Step in the Number Field Sieve

  • Conference paper
Advances in Information and Computer Security (IWSEC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 4752))

Included in the following conference series:

Abstract

This paper shows experimental results of the linear algebra step in the number field sieve on parallel environment with implementation techniques. We developed an efficient algorithm that shares the sum of vectors in each node, and the network structure among the nodes only requires to include a ring. We also investigated the construction of a network for the linear algebra step. The construction can be realized through switches and network interface cards, whose prices are not expensive. Moreover, we investigated the implementation of the linear algebra step using various parameters. The implementation described in this paper was used for the integer factoring of a 176 digit number by GNFS and a 274 digit number by SNFS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lenstra, A.K., Lenstra Jr., H.W. (eds.): AMCP 1998. Lecture Notes in Mathematics, vol. 1554. Springer, Heidelberg (1993)

    MATH  Google Scholar 

  2. Kleinjung, T.: rsa200 (2005), http://www.crypto-world.com/announcements/rsa200.txt

  3. Silverman, R.D.: A cost-based security analysis of symmetric and asymmetric key lengths. RSA Laboratories’ Bulletin, (revised 2001) (2000), http://www.rsasecurity.com/rsalabs/node.asp?id=2088

  4. Leyland, P., Lenstra, A., Dodson, B., Muffett, A., Wagstaff, S.: MPQS with three large primes. In: Fieker, C., Kohel, D.R. (eds.) ANTS-V. LNCS, vol. 2369, pp. 446–460. Springer, Heidelberg (2002)

    Google Scholar 

  5. Aoki, K., Kida, Y., Shimoyama, T., Ueda, H.: GNFS176 (2005), http://www.crypto-world.com/announcements/c176.txt

  6. Montgomery, P.L.: A block Lanczos algorithm for finding dependencies over GF(2). In: Guillou, L.C., Quisquater, J.J. (eds.) EUROCRYPT 1995. LNCS, vol. 921, pp. 106–120. Springer, Heidelberg (1995)

    Google Scholar 

  7. Coppersmith, D.: Solving homogeneous linear equations over GF(2) via block Wiedemann algorithm. Mathematics of Computation 62, 333–350 (2004)

    Article  MathSciNet  Google Scholar 

  8. Montgomery, P.L.: Distributed linear algebra. In: presentation slides for ECC2000 (2000), http://www.cacr.math.uwaterloo.ca/conferences/2000/ecc2000/montgomery.ps

  9. Golliver, R.A., Lenstra, A.K., McCurley, K.S.: Lattice sieving and trial division. In: Huang, M-D.A., Adleman, L.M. (eds.) ANTS-I. LNCS, vol. 877, pp. 18–27. Springer, Heidelberg (1994)

    Google Scholar 

  10. Aoki, K., Kida, Y., Shimoyama, T., Sonoda, Y., Ueda, H.: SNFS248 (2004), http://www.rkmath.rikkyo.ac.jp/~kida/snfs248e.htm

Download references

Author information

Authors and Affiliations

Authors

Editor information

Atsuko Miyaji Hiroaki Kikuchi Kai Rannenberg

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aoki, K., Shimoyama, T., Ueda, H. (2007). Experiments on the Linear Algebra Step in the Number Field Sieve . In: Miyaji, A., Kikuchi, H., Rannenberg, K. (eds) Advances in Information and Computer Security. IWSEC 2007. Lecture Notes in Computer Science, vol 4752. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75651-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75651-4_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75650-7

  • Online ISBN: 978-3-540-75651-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics