Skip to main content

Implication-Based Approximating Bounded Model Checking

  • Conference paper
International Symposium on Fundamentals of Software Engineering (FSEN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4767))

Included in the following conference series:

Abstract

This paper presents an iterative framework based on over-approximation and under-approximation for traditional bounded model checking (BMC). A novel feature of our approach is the approximations are defined based on “implication” instead of “simulation”. As a common partial order relation of logic formulas, implication is suitable for the satisfiability checking of BMC for debugging. Our approach could generate the implication-based approximations efficiently with necessary accuracy, thus it potentially enables BMC to go deeper and the output counterexamples with fewer variables are easier to understand. An experiment on a suite of Petri nets shows the effectiveness of implication-based approximating BMC.

This work was supported in part by the National Natural Science Foundation of China (60425206, 60373066, 60403016), Natural Science Foundation of Jiangsu Province (BK2005060), High Technology Research Project of Jiangsu Province (BG2005032), Excellent Talent Foundation on Teaching and Research of Southeast University, and Open Foundation of State Key Laboratory of Software Engineering in Wuhan University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded Model Checking. Advances in Cpmputers 58 (2003)

    Google Scholar 

  2. Tao, Z.H., Zhou, C.H., Chen, Z., Wang, L.F.: Bounded Model Checking of CTL*. Journal of Computer Science and Technology 22(1), 39–43 (2007)

    Article  MathSciNet  Google Scholar 

  3. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM Transactions on Programming Languages and Systems 16(5), 1512–1542 (1994)

    Article  Google Scholar 

  4. Chauhan, P., Clarke, E., Kukula, J., Sapra, S., Veith, H., Wang, D.: Automated Abstraction Refinement for Model Checking Large State Spaces Using SAT based Conflict Analysis. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517, pp. 33–51. Springer, Heidelberg (2002)

    Google Scholar 

  5. Chen, Z.Y., Zhou, C.H., Ding, D.C.: Automatic abstraction refinement for Petri nets verification. In: Proceedings of the 10th IEEE International High-Level Design Validation and Test Workshop, pp. 168–174. IEEE, Los Alamitos (2005)

    Chapter  Google Scholar 

  6. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)

    Google Scholar 

  7. Gupta, A., Strichman, O.: Abstraction refinement for bounded model checking. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 112–124. Springer, Heidelberg (2005)

    Google Scholar 

  8. Milner, R.: An algebraic definition of simulation between programs. In: Proceedings of the 2nd international Joint Conference on Artificial Intelligence, pp. 481–489 (1971)

    Google Scholar 

  9. Ravi, K., Somenzi, F.: Minimal assignments for bounded model checking. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 31–45. Springer, Heidelberg (2004)

    Google Scholar 

  10. Chen, Z.Y., Ding, D.C.: Variable Minimal Unsatisfiability. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 262–273. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Shoham, S., Grumberg, O.: Monotonic Abstraction-Refinement for CTL. In: Garavel, H., Hatcliff, J. (eds.) ETAPS 2003 and TACAS 2003. LNCS, vol. 2619, pp. 546–560. Springer, Heidelberg (2003)

    Google Scholar 

  12. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal of the ACM 7(3), 201–215 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  13. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (1999)

    Google Scholar 

  14. Ogata, S., Tsuchiya, T., Kikuno, T.: SAT-based Verification of Safe Petri Nets. In: Wang, F. (ed.) ATVA 2004. LNCS, vol. 3299, pp. 79–92. Springer, Heidelberg (2004)

    Google Scholar 

  15. Heljanko, K.: Bounded Reachability Checking with Process Semantics. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 218–232. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  16. Murata, T.: Petri nets: Properties, Analysis and Applications. IEEE 77(4), 541–580 (1989)

    Article  Google Scholar 

  17. Grahlmann, B.: The PEP Tool. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 440–443. Springer, Heidelberg (1997)

    Google Scholar 

  18. Cimatti, A., Clarke, E.M., Giunchiglia, F., Roveri, M.: NUSMV: A New Symbolic Model Checker. International Journal on Software Tools for Technology Transfer 2(4), 410–425 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Farhad Arbab Marjan Sirjani

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chen, Z., Tao, Z., Xu, B., Wang, L. (2007). Implication-Based Approximating Bounded Model Checking. In: Arbab, F., Sirjani, M. (eds) International Symposium on Fundamentals of Software Engineering. FSEN 2007. Lecture Notes in Computer Science, vol 4767. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75698-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75698-9_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75697-2

  • Online ISBN: 978-3-540-75698-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics