Skip to main content

A Master-Worker Type Eigensolver for Molecular Orbital Computations

  • Conference paper
Applied Parallel Computing. State of the Art in Scientific Computing (PARA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4699))

Included in the following conference series:

Abstract

We consider a parallel method for solving generalized eigenvalue problems that arise from molecular orbital computations. We use a moment-based method that finds several eigenvalues and their corresponding eigenvectors in a given domain, which is suitable for master-worker type parallel programming models. The computation of eigenvalues using explicit moments is sometimes numerically unstable. We show that a Rayleigh-Ritz procedure can be used to avoid the use of explicit moments. As a test problem, we use the matrices that arise in the calculation of molecular orbitals. We report the performance of the application of the proposed method with several PC clusters connected through a hybrid MPI and GridRPC system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnoldi, W.E.: The principle of minimized iteration in the solution of the matrix eigenproblem. Quarterly of Appl. Math. 9, 17–29 (1951)

    MathSciNet  Google Scholar 

  2. Bai, Z.: Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems. Appl. Numer. Math. 43, 9–44 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  3. Inadomi, Y., Nakano, T., Kitaura, K., Nagashima, U.: Definition of molecular orbitals in fragment molecular orbital method. Chem. Phys. Letters 364, 139–143 (2002)

    Article  Google Scholar 

  4. Kravanja, P., Sakurai, T., Van Barel, M.: On locating clusters of zeros of analytic functions. BIT 39, 646–682 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kravanja, P., Sakurai, T., Sugiura, H., Van Barel, M.: A perturbation result for generalized eigenvalue problems and its application to error estimation in a quadrature method for computing zeros of analytic functions. J. Comput. Appl. Math. 161, 339–347 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Magolu, M.M.M.: Incomplete factorization-based preconditionings for solving the Helmholtz equation. Int. J. Numer. Meth. Engng. 50, 1088–1101 (2001)

    Article  Google Scholar 

  7. Ninf-G: http://ninf.apgrid.org/

  8. Ruhe, A.: Rational Krylov algorithms for nonsymmetric eigenvalue problems II: matrix pairs. Lin. Alg. Appl. 197, 283–295 (1984)

    Article  MathSciNet  Google Scholar 

  9. Saad, Y.: Iterative Methods for Large Eigenvalue Problems. Manchester University Press, Manchester (1992)

    Google Scholar 

  10. Sakurai, T., Kravanja, P., Sugiura, H., Van Barel, M.: An error analysis of two related quadrature methods for computing zeros of analytic functions. J. Comput. Appl. Math. 152, 467–480 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Sakurai, T., Sugiura, H.: A projection method for generalized eigenvalue problems. J. Comput. Appl. Math. 159, 119–128 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Sakurai, T., Hayakawa, K., Sato, M., Takahashi, D.: A parallel method for large sparse generalized eigenvalue problems by OmniRPC in a grid environment. In: Dongarra, J.J., Madsen, K., Waśniewski, J. (eds.) PARA 2004. LNCS, vol. 3732, pp. 1151–1158. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Sakurai, T., Kodaki, Y., Umeda, H., Inadomi, Y., Watanabe, T., Nagashima, U.: A hybrid parallel method for large sparse eigenvalue problems on a grid computing environment using Ninf-G/MPI. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2005. LNCS, vol. 3743, pp. 438–445. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Sakurai, T.: A Rayleigh-Ritz type method for large-scale generalized eigenvalue problems. In: Abstract of 1st China-Japan-Korea Joint Conference on Computational Mathematics, Sapporo, pp. 50–52 (2006)

    Google Scholar 

  15. van der Vorst, H.A., Melissen, J.B.M.: A Petrov-Galerkin type method for solving A x = b, where A is a symmetric complex matrix. IEEE Trans. on Magnetics 26, 706–708 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bo Kågström Erik Elmroth Jack Dongarra Jerzy Waśniewski

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sakurai, T. et al. (2007). A Master-Worker Type Eigensolver for Molecular Orbital Computations. In: Kågström, B., Elmroth, E., Dongarra, J., Waśniewski, J. (eds) Applied Parallel Computing. State of the Art in Scientific Computing. PARA 2006. Lecture Notes in Computer Science, vol 4699. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75755-9_74

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75755-9_74

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75754-2

  • Online ISBN: 978-3-540-75755-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics