Skip to main content

Review of Computational Intelligence for Gene-Gene and Gene-Environment Interactions in Disease Mapping

  • Chapter
Computational Intelligence in Medical Informatics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 85))

Comprehensive evaluation of common genetic variations through association of SNP structure with common complex disease in the genome-wide scale is currently a hot area in human genome research. Computational science, which includes computational intelligence, has recently become the third method of scientific enquiry besides theory and experimentation. Interest grew fast in developing and applying computational intelligence techniques to disease mapping using SNP and haplotype data. This review provides a coverage of recently developed theories and applications in computational intelligence for gene-gene and gene-environment interactions in complex diseases in genetic association study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brookes AJ (1999) Review: The essence of SNPs. Gene (234) 177–186.

    Google Scholar 

  2. The International HapMap Consortium (2003) The International HapMap Project. Nature 426:789–796.

    Article  Google Scholar 

  3. The International HapMap Consortium (2004) Integrating ethics and science in the International HapMap Project. Nat Rev Genet 5:467–475.

    Article  Google Scholar 

  4. The International HapMap Consortium (2005) A haplotype map of the human genome. Nature, 437:1299–1320.

    Article  Google Scholar 

  5. Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, and Lander ES (2001) High-resolution haplotype structure in the human genome. Nat. Genet., 29, 229–232.

    Article  Google Scholar 

  6. Cardon LR, Bell JI (2001) Association study designs for complex diseases. Nat Rev Genet 2:91–99.

    Article  Google Scholar 

  7. Risch NJ (2000) Searching for genetic determinants in the new millennium. Nature 405:847–856.

    Article  Google Scholar 

  8. Risch N, Merikangas K (1996) The future of genetics studies of complex human diseases. Science 273:1516–1517.

    Article  Google Scholar 

  9. Stephens M and Donnelly P (2000) Inference in molecular population genetics. J R Stat Soc B 62:605–655.

    Article  MATH  MathSciNet  Google Scholar 

  10. Ioannidis JP, Gwinn M, Little J, Higgins JP, Bernstein JL, Boffetta P, Bondy M, Bray MS, Brenchley PE, Buffler PA, Casas JP, Chokkalingam A, Danesh J, Smith GD, Dolan S, Duncan R, Gruis NA, Hartge P, Hashibe M, Hunter DJ, Jarvelin MR, Malmer B, Maraganore DM, Newton-Bishop JA, O’Brien TR, Petersen G, Riboli E, Salanti G, Seminara D, Smeeth L, Taioli E, Timpson N, Uitterlinden AG, Vineis P, Wareham N, Winn DM, Zimmern R, and Khoury MJ (2006) Human Genome Epidemiology Network and the Network of Investigator Networks, A road map for efficient and reliable human genome epidemiology, Nature Genetics, 38(1):3–5.

    Article  Google Scholar 

  11. Chatterjee N, Kalaylioglu Z, Moslehi R, Peters U, and Wacholder S (2006) Powerful multilocus tests of genetic association in the presence of gene-gene and gene-environment interactions. American Journal of Human Genetics, 79(6):1002–1016.

    Article  Google Scholar 

  12. Cordell HJ, Barratt BJ, and Clayton DG (2004) Case/pseudocontrol analysis in genetic association studies: a unified framework for detection of genotype and haplotype associations, gene-gene and gene-environment interactions, and parent-of-origin effects. Genetic Epidemiology, 26(3):167–185.

    Article  Google Scholar 

  13. Hunter DJ (2005) Gene-environment interactions in human diseases. Nature Reviews Genetics, 6:287–298.

    Article  Google Scholar 

  14. Zondervan KT and Cardon LR (2004) The complex interplay among factors that influence allelic association. Nature Reviews Genetics, 5(2):89–100.

    Article  Google Scholar 

  15. Azevedo L, Suriano G, van Asch B, Harding RM, and Amorim A (2006) Epistatic interactions: how strong in disease and evolution? Trends Genet.

    Google Scholar 

  16. Chapman, JM, Cooper JD, Todd JA, and Clayton DG (2003) Detecting disease associations due to linkage disequilibrium using haplotype tags: a class of tests and the determinants of statistical power. Hum. Hered. 56, 18–31.

    Article  Google Scholar 

  17. Liu Z and Lin S (2005) Multilocus LD measure and tagging SNP selection with generalized mutual information. Genet Epidemiol. 29, 353–364.

    Article  Google Scholar 

  18. Halldrsson BV, Bafna V, Lippert R, Schwartz R, De La Vega FM, Clark AG, and Istraili S (2004) Optimal Haplotype Block-Free Selection of Tagging SNPs for Genome-Wide Association Studies Genome Res. 14, 1633–1640.

    Google Scholar 

  19. Howie BN, Carlson CS, Rieder MJ, and Nickerson DA (2006) Efficient selection of tagging single-nucleotide polymorphisms in multiple populations. Human Genetics, 120(1):58–68.

    Article  Google Scholar 

  20. Gopalakrishnan S and Qin ZS (2006) TagSNP Selection Based on Pairwise LD Criterion and Power Analysis in Association Studies. Pacific Sym. Biocomputing, 11:511–522.

    Article  Google Scholar 

  21. Ke X. and Cardon LR (2003) Efficient selective screening of haplotypes tag SNPs. Bioinformatics, 19, 287–288.

    Article  Google Scholar 

  22. Halperin E, Kimmel G, and Shamir R (2005) Tag SNP Selection in Genotype Data for Maximizing SNP Prediction Accuracy. Bioinformatics, 21(suppl 1): i195–i203, 2005.

    Article  Google Scholar 

  23. Akey J, Jin L, and Xiong M (2001) Haplotypes vs single marker linkage disequilibrium tests: what do we gain? Eur J Hum Genet 9 (4), 291–300.

    Article  Google Scholar 

  24. Zhu X, Zhang S, Kan D, and Cooper R (2004) Haplotype block definition and its application. Pacic Symposium on Biocomputing 9:152–163.

    Google Scholar 

  25. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B, Higgins J, DeFelice M, Lochner A, Faggart M, Liu-Cordero SN, Rotimi C, Adeyemo A, Cooper R, Ward R, Lander ES, Daly MJ, and Altshuler D (2002) The structure of haplotype blocks in the human genome. Science 296 (5576), 2225–2229.

    Article  Google Scholar 

  26. Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES, Phillips MS, et al. (2003) Chromosome-wide distribution of haplotype blocks and the role of recombination hot spots. Nature Genet. 33, 382–387.

    Article  Google Scholar 

  27. Zhang K, Calabrese P, Nordborg M, and Sun F (2002) Haplotype block structure and its applications to association studies: power and study designs. Am. J. Hum. Genet., 71, 1386–1394.

    Article  Google Scholar 

  28. Meng Z, Zaykin DV, Xu CF, Wagner M, and Ehm MG (2004) Selection of genetic markers for association analyses, using linkage disequilibrium and haplotypes. Am. J. Hum. Genet., 73:115–130.

    Article  Google Scholar 

  29. Anderson EC, and Novembre J (2003) Finding haplotype block boundaries by using the minimum-description-length principle. American Journal of Human Genetics, 73:336–354.

    Article  Google Scholar 

  30. Mannila H, Koivisto M, Perola M, Varilo T, Hennah W, Ekelund J, Lukk M, Peltonen L, and Ukkonen E (2003) Minimum description length block finder, a method to identify haplotype blocks and to compare the strength of block boundaries. Am. J. Hum. Genet., 73, 86–94.

    Article  Google Scholar 

  31. Zhang K, Deng M, Chen T, Waterman MS, and Sun F (2002) A dynamic programming algorithm for haplotype block partitioning. Proc. Natl Acad. Sci. USA, 99, 7335–7339.

    Article  MATH  Google Scholar 

  32. Beckmann L, Thomas DC, Fischer C, and Chang-Claude J (2005) Haplotype sharing analysis using Mantel statistics, Human Heredity, 59:67–78.

    Article  Google Scholar 

  33. Levin AM, Ghosh D, et al. (2005) A model-based scan statistics for identifying extreme chromosomal regions of gene expression in human tumors. Bioinformatics 21:2867–2874.

    Article  Google Scholar 

  34. Schaid DJ, Rowland CM, Tines DE, Jacobson RM, and Poland GA (2002) Score test for association between traits and haplotypes when linkage phase is ambiguous. Am J Hum Genet 70:425–443.

    Article  Google Scholar 

  35. Nothnagel M, Furst R, and Rohde K (2002) Entropy as a measure for linkage disequilibrium over multilocus haplotype blocks. Hum Hered, 54:186–198.

    Article  Google Scholar 

  36. Hampe J, Schreiber S, and Krawczak M (2003) Entropy-based SNP selection for genetic association studies. Hum Genet. 114:36–43.

    Article  Google Scholar 

  37. Zhao J, Boerwinkle E, and Xiong M (2005) An entropy-based statistic for genomewide association studies. American Journal of Human Genetics, 77:27–40.

    Article  Google Scholar 

  38. Zaykin DV, Zhivotovsky LA, et al. (2002) Truncated product method for combining P-values. Genet Epidemio l22:170–185.

    Article  Google Scholar 

  39. Ott J (2004) Issues in association analysis: error control in case-control association studies for disease gene discovery. Human Heredity, 58:171–174.

    Article  Google Scholar 

  40. He J and Zelikovsky A (2006) MLR-tagging informative SNP selection for unphased genotypes based on multiple linear regression, Bioinformatics, 22(20):2558–2561.

    Article  Google Scholar 

  41. Durrant C, Zondervan KT, Lon R, Cardon L, Hunt S, Deloukas P, and Morris AP (2004) Linkage Disequilibrium Mapping via Cladistic Analysis of Single-Nucleotide Polymorphism Haplotypes. Am. J. Hum. Genet. 75, 35–43.

    Article  Google Scholar 

  42. Baker SG (2005) A simple loglinear model for haplotype effects in a case-control study involving two unphased genotypes, Statistical Applications in Genetics and Molecular Biology, 4(1):14.

    Article  MathSciNet  Google Scholar 

  43. Tzeng J, Wang C, Kao J, and Hsiao CK (2006) Regression-based association analysis with clustered haplotypes through use of genotypes. American Journal of Human Genetics, 78(2):231–242.

    Article  Google Scholar 

  44. Burkett K, McNeney B, and Graham J (2004) A note on inference of trait associations with SNP haplotypes and other attributes in generalized linear models. Human Heredity, 57:200–206.

    Article  Google Scholar 

  45. Greenspan G and Geiger D (2004) Model-based inference of haplotype block variation. J. Comp. Biol. 11, 493–504.

    Article  Google Scholar 

  46. Greenspan G and Geiger D (2006) Modeling Haplotype Block Variation Using Markov Chains, Genetics, 172(4): 2583–2599.

    Article  Google Scholar 

  47. Thomas DC, Stram DO, Conti D, Molitor J, and Marjoram P (2003) Bayesian spatial modeling of haplotype associations, Human Heredity, 56:32–40.

    Article  Google Scholar 

  48. Schwender H and Ickstadt K (2006) Identification of SNP Interactions Using Logic Regression. http://www.sfb475.uni-dortmund.de/berichte/tr31-06.pdf (preprint)

  49. Verzilli CJ, Stallard N, and Whittaker JC (2006) Bayesian graphical models for genomewide association studies. American Journal of Human Genetics, 79(1):100–112.

    Article  Google Scholar 

  50. Ott J (2001) Neural networks and disease association studies. American Journal of Medical Genetics, Volume 105, Issue 1, 60–61.

    Article  MathSciNet  Google Scholar 

  51. Clark TG, De Iorio M, Griffiths RC, and Farrall M (2005) Finding associations in dense genetic maps: a genetic algorithm approach. Human Heredity, 60:97–108.

    Article  Google Scholar 

  52. Lam JC, Roeder K, and Devlin B (2000) Haplotype fine mapping by evolutionary trees. Am. J. Hum. Genet. 66 (2), 659–673.

    Article  Google Scholar 

  53. Chang C, Huang Y, and Chao K (2006) A greedier approach for finding tag SNPs, Bioinformatics, 22(6):685–691.

    Article  Google Scholar 

  54. Li J and Jiang T (2005) Haplotype-based linkage disequilibrium mapping via direct data mining, Bioinformatics, 21:4384–4393.

    Article  Google Scholar 

  55. Lin Z and Altman RB (2004) Finding haplotype tagging SNPs by use of principal components analysis. Am. J. Hum. Genet. 75: 850–861.

    Article  Google Scholar 

  56. Horne BD and Camp NJ (2004) Principal component analysis for selection of optimal SNP-sets that capture intragenic genetic variation. Genetic Epidemiology, 26(1):11–21.

    Article  Google Scholar 

  57. Ao S, Yip K, Ng M, Cheung D, Fong PY, Melhado I, and Sham PC (2005) CLUSTAG: hierarchical clustering and graph methods for selecting tag SNPs. Bioinformatics, 21(8):1735–1736.

    Article  Google Scholar 

  58. Kooperberg C, Ruczinski I, LeBlanc M, and Hsu L (2001) Sequence Analysis Using Logic Regression. Genetic Epidemiology, 21:626–631.

    Google Scholar 

  59. Moore JH (2004) Genome-wide analysis of epistasis using multifactor dimensionality reduction: feature selection and construction in the domain of human genetics. In: Zhu, D. (eds.) Knowledge Discovery and Data Mining: Challenges and Realities with Real World Data, IGI.

    Google Scholar 

  60. Liu JS, Sabatti C, Teng J, Keats BJ, and Risch N (2001) Bayesian analysis of haplotypes for linkage disequilibrium mapping. Genome Research 11 (10), 1716–1724.

    Article  Google Scholar 

  61. Molitor J, Marjoram P, and Thomas D (2003) Fine-Scale Mapping of Disease Genes with Multiple Mutations via Spatial Clustering Techniques. Am. J. Hum. Genet. 73, 1368–1384.

    Article  Google Scholar 

  62. Toivonen HT, Onkamo P, Vasko K, Ollikainen V, Sevon P, Mannila H, Herr M, and Kere J (2000) Data mining applied to linkage disequilibrium mapping. Am. J. Hum. Genet. 67 (1), 133–145.

    Article  Google Scholar 

  63. Ritchie MD, White BC, Parker JS, Hahn LW, and Moore JH (2003) PMID Optimization of neural network architecture using genetic programming improves detection and modeling of gene-gene interactions in studies of human diseases. BMC Bioinformatics 4:28.

    Article  Google Scholar 

  64. Banzhaf W, Beslon G, Christensen S, Foster JA, Kepes F, Lefort V, Miller JF, Radman M, and Ramsden JJ (2006) Guidelines: From artificial evolution to computational evolution: a research agenda. Nat Rev Genet. Sep;7(9):729–35.

    Article  Google Scholar 

  65. Moore JH and White BC (2006a) Exploiting expert knowledge for genome-wide genetic analysis using genetic programming. In: Runarsson et al. (eds.) Parallel Problem Solving from Nature - PPSN IX, Lecture Notes in Computer Science 4193, 969–977.

    Article  Google Scholar 

  66. Foster JA. (2001) Evolutionary computation. Nat Rev Genet. 2(6):428–36.

    Article  Google Scholar 

  67. Motsinger AA, Lee SL, Mellick G, and Ritchie MD (2006) GPNN: Power studies and applications of a neural network method for detecting gene-gene interactions in studies of human disease. BMC Bioinformatics. 25;7(1):39.

    Google Scholar 

  68. Motsinger AA, Fanelli TJ, and Ritchie MD (2006) Power of Grammatical Evolution Neural Networks to Detect Gene-Gene Interactions in the Presence of Error Common to Genetic Epidemiological Studies. International Genetic Epidemiology Society 15th Annual Meeting.

    Google Scholar 

  69. Pedrycz W (1997) Computational Intelligence: An Introduction. Boca Raton, FL, CRC

    MATH  Google Scholar 

  70. (2000) Pedrycz W and Vasilakos A (2000) Computational Intelligence in Telecommunications Networks. Boca Raton, FL, CRC.

    Google Scholar 

  71. Turing AM (1956) Can a machine think? In: Newman, J.R. (Ed.), The World of Mathematics, vol. 4. Simon and Schuster, New York, 2122.

    Google Scholar 

  72. Vasilakos A and Pedrycz W (2006) Ambient Intelligence, Wireless Networking, Ubiquitous Computing. ArtecHouse, MA, USA.

    Google Scholar 

  73. Fogel GB and Corne DW (2002) Evolutionary Computation in Bioinformatics. Morgan Kaufmann, San Francisco.

    Google Scholar 

  74. Moore JH and White BC (2006b) Detecting Epistatic Needles in Genome-Wide Haystacks. American human genetics conferences.

    Google Scholar 

  75. Hubley RM, Zitzler E, Roach JC (2003) Evolutionary algorithms for the selection of single nucleotide polymorphisms. BMC Bioinformatics 4:30.

    Article  Google Scholar 

  76. Moore JH and Hahn LW (2002) A cellular automata approach to detecting interactions among single-nucleotide polymorphisms in complex multifactorial diseases. Pac Symp Biocomput. 53–64.

    Google Scholar 

  77. Onkamo P and Toivonen H (2006) A survey of data mining methods for linkage disequilibrium mapping. Human Genomics, Vol 2(1), 336–340(5).

    Google Scholar 

  78. Salem, RM, Wessel J, and Schork, NJ (2005) A comprehensive literature review of haplotyping software and methods for use with unrelated individuals. Human Genomics, Vol 2(1) pp. 39–66(28).

    Google Scholar 

  79. Molitor J, Marjoram P, Conti D, and Thomas D (2004) A survey of current Bayesian gene mapping methods. Human Genomics, Vol 1(5) pp. 371–374(4).

    Google Scholar 

  80. Shah SC and Kusiak A (2004) Data mining and genetic algorithm based gene/SNP selection. Artif Intell Med. (3):183–96.

    Google Scholar 

  81. McKinney BA, Reif DM, Ritchie MD, and Moore JH (2006) Machine Learning for Detecting Gene-Gene Interactions: A Review. Applied Bioinformatics. 5(2):77–88.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kelemen, A., Liang, Y., Vasilakos, A. (2008). Review of Computational Intelligence for Gene-Gene and Gene-Environment Interactions in Disease Mapping. In: Kelemen, A., Abraham, A., Liang, Y. (eds) Computational Intelligence in Medical Informatics. Studies in Computational Intelligence, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75767-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75767-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75766-5

  • Online ISBN: 978-3-540-75767-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics