Skip to main content

Intelligent Approaches to Mining the Primary Research Literature: Techniques, Systems, and Examples

  • Chapter
Computational Intelligence in Medical Informatics

Part of the book series: Studies in Computational Intelligence ((SCI,volume 85))

In this chapter, we describe how creating knowledge bases from the primary biomedical literature is formally equivalent to the process of performing a literature review or a ‘research synthesis’. We describe a principled approach to partitioning the research literature according to the different types of experiments performed by researchers and how knowledge engineering approaches must be carefully employed to model knowledge from different types of experiment. The main body of the chapter is concerned with the use of text mining approaches to populate knowledge representations for different types of experiment. We provide a detailed example from neuroscience (based on anatomical tract-tracing experiments) and provide a detailed description of the methodology used to perform the text mining itself (based on the Conditional Random Fields model). Finally, we present data from textmining experiments that illustrate the use of these methods in a real example. This chapter is designed to act as an introduction to the field of biomedical text-mining for computer scientists who are unfamiliar with the way that biomedical research uses the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. P. Jenuth (2000), Methods Mol Biol, 132: 301-12

    Google Scholar 

  2. I. Sim, G. D. Sanders and K. M. McDonald (2002), J Gen Intern Med, 17(4): 302-8

    Article  Google Scholar 

  3. M. P. Young, J. W. Scannell and G. A. P. C. Burns (1995), The analysis of cortical connectivity. ed. ed. Vol., Austin, Texas: R. G. Landes.

    Google Scholar 

  4. K. E. Stephan, L. Kamper, A. Bozkurt, G. A. Burns, M. P. Young and R. Kotter (2001), Philos Trans R Soc Lond B Biol Sci, 356(1412): 1159-86

    Article  Google Scholar 

  5. M. Bota, H. Dong and L. W. Swanson (2005), Neuroinformatics, 3(1): 15-48

    Article  Google Scholar 

  6. T. Reguly, A. Breitkreutz, L. Boucher, B. J. Breitkreutz, G. C. Hon, C. L. Myers, A. Parsons, H. Friesen, R. Oughtred, A. Tong, C. Stark, Y. Ho, D. Botstein, B. Andrews, C. Boone, O. G. Troyanskya, T. Ideker, K. Dolinski, N. N. Batada and M. Tyers (2006), J Biol, 5(4): 11

    Article  Google Scholar 

  7. H. M. Muller, E. E. Kenny and P. W. Sternberg (2004), PLoS Biol, 2(11): e309

    Article  Google Scholar 

  8. A. Rzhetsky, I. Iossifov, T. Koike, M. Krauthammer, P. Kra, M. Morris, H. Yu, P. A. Duboue, W. Weng, W. J. Wilbur, V. Hatzivassiloglou and C. Friedman (2004), J Biomed Inform, 37(1): 43-53

    Article  Google Scholar 

  9. R. Kotter (2004), Neuroinformatics, 2(2): 127-44

    Article  Google Scholar 

  10. R. Apweiler, A. Bairoch, C. H. Wu, W. C. Barker, B. Boeckmann, S. Ferro, E. Gasteiger, H. Huang, R. Lopez, M. Magrane, M. J. Martin, D. A. Natale, C. O’Donovan, N. Redaschi and L. S. Yeh (2004), Nucleic Acids Res, 32(Database issue): D115-9

    Article  Google Scholar 

  11. M. Kanehisa (2002), Novartis Found Symp, 247: 91-101; discussion 101-3, 119-28, 244-52

    Article  Google Scholar 

  12. H. Cooper and L. V. Hedges (1994), The Handbook of Research Synthesis. ed. ed. Vol., New York: Russell Sage Foundation.

    Google Scholar 

  13. G. A. Burns, A. M. Khan, S. Ghandeharizadeh, M. A. O’Neill and Y. S. Chen (2003), Neuroinformatics, 1(1): 81-109

    Article  Google Scholar 

  14. G. A. Burns and W. C. Cheng (2006), J Biomed Discov Collab, 1(1): 10

    Article  Google Scholar 

  15. D. L. Rubin, S. E. Lewis, C. J. Mungall, S. Misra, M. Westerfield, M. Ashburner, I. Sim, C. G. Chute, H. Solbrig, M. A. Storey, B. Smith, J. Day-Richter, N. F. Noy and M. A. Musen (2006), Omics, 10(2): 185-98

    Article  Google Scholar 

  16. T. R. Gruber (1993), Towards principles for the design of ontologies used for knowledge sharing. in International Workshop on Formal Ontology. Padova, Italy.

    Google Scholar 

  17. N. F. Noy, M. Crubezy, R. W. Fergerson, H. Knublauch, S. W. Tu, J. Vendetti and M. A. Musen (2003), AMIA Annu Symp Proc: 953

    Google Scholar 

  18. D. Oberle, R. Volz, B. Motik and S. Staab (2004), An extensible ontology software environment, In, Handbook on Ontologies, Springer. 311-333.

    Google Scholar 

  19. OBO-Edit - The OBO Ontology Editor [http://oboedit.org/]

  20. D. R. Swanson (1990), Bull Med Libr Assoc, 78(1): 29-37

    Google Scholar 

  21. M. V. Blagosklonny and A. B. Pardee (2002), Nature, 416(6879): 373

    Article  Google Scholar 

  22. N. R. Smalheiser and D. R. Swanson (1998), Comput Methods Programs Biomed, 57(3): 149-53

    Article  Google Scholar 

  23. M. Ashburner, C. Ball, J. Blake, D. Botstein, H. Butler, J. Cherry, A. Davis, K. Dolinski, S. Dwight, J. Eppig, M. Harris, D. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J. Matese, J. Richardson, M. Ringwald, G. Rubin and G. Sherlock (2000), Nat Genet, 25(1): 25-9

    Article  Google Scholar 

  24. B. Latour and S. Woolgar (1979), Laboratory Life. 2 ed. ed. Vol., Princeton, New Jersey: Princeton University Press.

    Google Scholar 

  25. G. D. Ruxton and N. Colegrave (2003), Experimental design for the life sciences. ed. ed. Vol., Oxford: Oxford University Press.

    Google Scholar 

  26. S. S. Stevens (1946), Science, 103(2684): 677-680

    Article  Google Scholar 

  27. D. A. Sprott (2000), Statistical Inference in Science. ed. ed. Vol., New York: Springer Verlag.

    MATH  Google Scholar 

  28. N. F. Noy, M. Crubezy, R. W. Fergerson, H. Knublauch, S. W. Tu, J. Vendetti and M. A. Musen (2003), AMIA Annu Symp Proc: 953

    Google Scholar 

  29. P. D. Karp (2001), Science, 293(5537): 2040-4

    Article  Google Scholar 

  30. C. Brooksbank and J. Quackenbush (2006), Omics, 10(2): 94-9

    Article  Google Scholar 

  31. A. Brazma, P. Hingamp, J. Quackenbush, G. Sherlock, P. Spellman, C. Stoeckert, J. Aach, W. Ansorge, C. A. Ball, H. C. Causton, T. Gaasterland, P. Glenisson, F. C. Holstege, I. F. Kim, V. Markowitz, J. C. Matese, H. Parkinson, A. Robinson, U. Sarkans, S. Schulze-Kremer, J. Stewart, R. Taylor, J. Vilo and M. Vingron (2001), Nat Genet, 29(4): 365-71

    Article  Google Scholar 

  32. E. W. Deutsch, C. A. Ball, G. S. Bova, A. Brazma, R. E. Bumgarner, D. Campbell, H. C. Causton, J. Christiansen, D. Davidson, L. J. Eichner, Y. A. Goo, S. Grimmond, T. Henrich, M. H. Johnson, M. Korb, J. C. Mills, A. Oudes, H. E. Parkinson, L. E. Pascal, J. Quackenbush, M. Ramialison, M. Ringwald, S. A. Sansone, G. Sherlock, C. J. Stoeckert, Jr., J. Swedlow, R. C. Taylor, L. Walashek, Y. Zhou, A. Y. Liu and L. D. True (2006), Omics, 10(2): 205-8

    Article  Google Scholar 

  33. J. Leebens-Mack, T. Vision, E. Brenner, J. E. Bowers, S. Cannon, M. J. Clement, C. W. Cunningham, C. dePamphilis, R. deSalle, J. J. Doyle, J. A. Eisen, X. Gu, J. Harshman, R. K. Jansen, E. A. Kellogg, E. V. Koonin, B. D. Mishler, H. Philippe, J. C. Pires, Y. L. Qiu, S. Y. Rhee, K. Sjolander, D. E. Soltis, P. S. Soltis, D. W. Stevenson, K. Wall, T. Warnow and C. Zmasek (2006), Omics, 10(2): 231-7

    Article  Google Scholar 

  34. G. A. Burns (2001), Philos Trans R Soc Lond B Biol Sci, 356(1412): 1187-208

    Article  Google Scholar 

  35. R. Homayouni, K. Heinrich, L. Wei and M. W. Berry (2005), Bioinformatics, 21(1): 104-15

    Article  Google Scholar 

  36. R. B. Norgren, Jr. and M. N. Lehman (1998), Neurosci Biobehav Rev, 22(6): 695-708

    Article  Google Scholar 

  37. M. Y. Galperin (2006), Nucleic Acids Res, 34(Database issue): D3-5

    Article  Google Scholar 

  38. The Neuroscience Database Gateway [http://ndg.sfn.org/]

  39. P. D. Karp, C. A. Ouzounis, C. Moore-Kochlacs, L. Goldovsky, P. Kaipa, D. Ahren, S. Tsoka, N. Darzentas, V. Kunin and N. Lopez-Bigas (2005), Nucleic Acids Res, 33(19): 6083-9

    Article  Google Scholar 

  40. R. Caspi, H. Foerster, C. A. Fulcher, R. Hopkinson, J. Ingraham, P. Kaipa, M. Krummenacker, S. Paley, J. Pick, S. Y. Rhee, C. Tissier, P. Zhang and P. D. Karp (2006), Nucleic Acids Res, 34(Database issue): D511-6

    Article  Google Scholar 

  41. I. M. Keseler, J. Collado-Vides, S. Gama-Castro, J. Ingraham, S. Paley, I. T. Paulsen, M. Peralta-Gil and P. D. Karp (2005), Nucleic Acids Res, 33(Database issue): D334-7

    Article  Google Scholar 

  42. C. Stark, B. J. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz and M. Tyers (2006), Nucleic Acids Res, 34(Database issue): D535-9

    Article  Google Scholar 

  43. H. Ogata, S. Goto, K. Sato, W. Fujibuchi, H. Bono and M. Kanehisa (1999), Nucleic Acids Res, 27(1): 29-34

    Article  Google Scholar 

  44. L. Kreppel, P. Fey, P. Gaudet, E. Just, W. A. Kibbe, R. L. Chisholm and A. R. Kimmel (2004), Nucleic Acids Res, 32(Database issue): D332-3

    Article  Google Scholar 

  45. M. Ashburner and R. Drysdale (1994), Development, 120(7): 2077-9

    Google Scholar 

  46. J. A. Blake, J. E. Richardson, M. T. Davisson and J. T. Eppig (1997), Nucleic Acids Res, 25(1): 85-91

    Google Scholar 

  47. S. Twigger, J. Lu, M. Shimoyama, D. Chen, D. Pasko, H. Long, J. Ginster, C. F. Chen, R. Nigam, A. Kwitek, J. Eppig, L. Maltais, D. Maglott, G. Schuler, H. Jacob and P. J. Tonellato (2002), Nucleic Acids Res, 30(1): 125-8

    Article  Google Scholar 

  48. J. M. Cherry, C. Adler, C. Ball, S. A. Chervitz, S. S. Dwight, E. T. Hester, Y. Jia, G. Juvik, T. Roe, M. Schroeder, S. Weng and D. Botstein (1998), Nucleic Acids Res, 26(1): 73-9

    Article  Google Scholar 

  49. E. Huala, A. W. Dickerman, M. Garcia-Hernandez, D. Weems, L. Reiser, F. LaFond, D. Hanley, D. Kiphart, M. Zhuang, W. Huang, L. A. Mueller, D. Bhattacharyya, D. Bhaya, B. W. Sobral, W. Beavis, D. W. Meinke, C. D. Town, C. Somerville and S. Y. Rhee (2001), Nucleic Acids Res, 29(1): 102-5

    Article  Google Scholar 

  50. E. F. Kirkness and A. R. Kerlavage (1997), Methods Mol Biol, 69: 261-8

    Google Scholar 

  51. T. W. Harris, R. Lee, E. Schwarz, K. Bradnam, D. Lawson, W. Chen, D. Blasier, E. Kenny, F. Cunningham, R. Kishore, J. Chan, H. M. Muller, A. Petcherski, G. Thorisson, A. Day, T. Bieri, A. Rogers, C. K. Chen, J. Spieth, P. Sternberg, R. Durbin and L. D. Stein (2003), Nucleic Acids Res, 31(1): 133-7

    Article  Google Scholar 

  52. M. Westerfield, E. Doerry, A. E. Kirkpatrick and S. A. Douglas (1999), Methods Cell Biol, 60: 339-55

    Article  Google Scholar 

  53. P. E. Bourne and J. McEntyre (2006), PLoS Comput Biol, 2(10): e142

    Article  Google Scholar 

  54. The Jackson Laboratory - Advancing Research in Human Health [http://www.jax.org/]

  55. J. D. Kim, T. Ohta, Y. Tateisi and J. Tsujii (2003), Bioinformatics, 19 Suppl 1: i180-2

    Article  Google Scholar 

  56. A. Yakushiji, Y. Tateisi, Y. Miyao and J. Tsujii (2001), Pac Symp Biocomput: 408-19

    Google Scholar 

  57. P. D. Karp (2000), Bioinformatics, 16(3): 269-85

    Article  Google Scholar 

  58. The Signal Transduction Knowledge Environment (STKE) [http://stke.sciencemag.org/]

  59. A. Rzhetsky, T. Koike, S. Kalachikov, S. M. Gomez, M. Krauthammer, S. H. Kaplan, P. Kra, J. J. Russo and C. Friedman (2000), Bioinformatics, 16(12): 1120-8

    Article  Google Scholar 

  60. C. Friedman, P. Kra, H. Yu, M. Krauthammer and A. Rzhetsky (2001), Bioinformatics, 17 Suppl 1: S74-82

    Google Scholar 

  61. D. L. Wheeler, T. Barrett, D. A. Benson, S. H. Bryant, K. Canese, V. Chetvernin, D. M. Church, M. DiCuccio, R. Edgar, S. Federhen, L. Y. Geer, W. Helmberg, Y. Kapustin, D. L. Kenton, O. Khovayko, D. J. Lipman, T. L. Madden, D. R. Maglott, J. Ostell, K. D. Pruitt, G. D. Schuler, L. M. Schriml, E. Sequeira, S. T. Sherry, K. Sirotkin, A. Souvorov, G. Starchenko, T. O. Suzek, R. Tatusov, T. A. Tatusova, L. Wagner and E. Yaschenko (2006), Nucleic Acids Res, 34(Database issue): D173-80

    Article  Google Scholar 

  62. A. Gass (2004), PLoS Biol, 2(10): e353

    Article  Google Scholar 

  63. P. Pantel, D. Ravichandran and E. H. Hovy (2004), Towards Terascale Knowledge Acquisition. in Proceedings of the COLING conference. Geneva, Switzerland.

    Google Scholar 

  64. A. Khan, J. Hahn, W.-C. Cheng, A. Watts and G. Burns (2006), Neuroinformatics, 4(2): 139-160

    Article  Google Scholar 

  65. W.-C. Cheng and G. A. P. C. Burns (2006), NeuARt II Developers Manual, In, University of Southern California, Information Sciences Institute.: Los Angeles. 1-44.

    Google Scholar 

  66. H. Cooper (1998), Synthesizing Research. A Guide for Literature Reviews. 3 ed. ed. Vol., Thousand Oaks: Sage Publications.

    Google Scholar 

  67. G. Schrieber, H. Akkermans, A. Anjewierden, R. de Hoog, N. Shadbolt, W. Van de Velde and B. Wielinga (2000), Knowledge Engineering and Management. The CommonKADS Methodology. ed. ed. Vol., Cambridge, MA: MIT Press.

    Google Scholar 

  68. D. Rebholz-Schuhmann, H. Kirsch, M. Arregui, S. Gaudan, M. Rynbeek and P. Stoehr (2006), Nat Biotechnol, 24(8): 902-3

    Article  Google Scholar 

  69. A. S. Yeh, L. Hirschman and A. A. Morgan (2003), Bioinformatics, 19 Suppl 1: i331-9

    Article  Google Scholar 

  70. A. M. Cohen and W. R. Hersh (2006), J Biomed Discov Collab, 1: 4

    Article  Google Scholar 

  71. W. Hersh, A. Cohen, J. Yang, R. T. Bhupatiraju, P. Roberts and M. Hearst (2005), TREC 2005 Genomics Track Overview. in Text REtrieval Conference (TREC) 2005. Gaithersburg, Maryland.

    Google Scholar 

  72. S. J. Buckingham Shum, V. Uren, G. Li, J. Domingue and E. Motta (2003), Visualizing Internetworked Argumentation, In, Visualizing Argumentation, software tools for collaborative and educational sense making, Springer: London.

    Google Scholar 

  73. T. Chklovski, Y. Gil, V. Ratnakar and J. Lee (2003), TRELLIS: Supporting Decision Making via Argumentation in the Semantic Web. in 2nd International Semantic Web Conference (ISWC 2003). Sanibel Island, Florida, USA. 20-23.

    Google Scholar 

  74. I. Sim, G. D. Sanders and K. M. McDonald (2002), J Gen Intern Med, 17(4): 302-8

    Article  Google Scholar 

  75. P. Radivojac, N. V. Chawla, A. K. Dunker and Z. Obradovic (2004), J Biomed Inform, 37(4): 224-39

    Article  Google Scholar 

  76. W. P. Kuo, E. Y. Kim, J. Trimarchi, T. K. Jenssen, S. A. Vinterbo and L. Ohno-Machado (2004), J Biomed Inform, 37(4): 293-303

    Article  Google Scholar 

  77. R. Durbin, S. Eddy, A. Krogh and G. Mitchison (1998), Biological Sequence Analysis. ed. ed. Vol., Cambridge: University Press, Cambridge.

    MATH  Google Scholar 

  78. M. P. Young (1992), Nature, 358(6382): 152-5

    Article  Google Scholar 

  79. G. A. Burns and M. P. Young (2001), Philos Trans R Soc Lond B Biol Sci, 355(1393): 55-70

    Google Scholar 

  80. G. Hirst, C. DiMarco, E. H. Hovy and K. Parsons. (1997), Authoring and Generating Health-Education Documents that are Tailored to the Needs of the Individual Patient. in The Sixth International Conference on User Modeling (UM97). Sardinia, Italy.

    Google Scholar 

  81. W. M. Cowan (1971), Brain Reserach, 37(1): 21-51

    Article  Google Scholar 

  82. C. Kobbert, R. Apps, I. Bechmann, J. L. Lanciego, J. Mey and S. Thanos (2000), Prog Neurobiol, 62(4): 327-51

    Article  Google Scholar 

  83. D. J. Felleman and D. C. Van Essen (1991), Cereb Cortex, 1(1): 1-47

    Article  Google Scholar 

  84. G. A. P. C. Burns (1997), Neural connectivity in the rat: theory, methods and applications, In, Department of Physiological Sciences, Oxford University: Oxford. 1-481.

    Google Scholar 

  85. C. R. Gerfen and P. E. Sawchenko (1984), Brain Res, 290(2): 219-38

    Article  Google Scholar 

  86. L. C. Schmued (1989), Fluoro-Gold and 4-acetamindo-4’-isothiocyanostilbene-2-2’-disulpfonic acid: Use of substituted stilbenes in neuroanatomical studies., In, Methods in Neurosciences, Vol. 3. Quantitative and Qualitative Microscopy., Academic Press: New York.

    Google Scholar 

  87. MUC (1988-95), Overview. in Message Understanding Conference (MUC). http://www.itl.nist.gov/iaui/894.02/related_projects/muc/.

  88. L. Hirschman and C. Blaschke (2006), Evaluation of Text Mining in Biology, In, Text Mining for Biology and Biomedicine, Artech House: Boston.

    Google Scholar 

  89. D. Appelt and D. Israel (1999), Introduction to Information Extraction. in IJCAI-99. Stockholm, Sweden. http://www.ai.sri.com/appelt/ie-tutorial/.

  90. S. Soderland, D. Fisher, J. Aseltine and W. Lehnert (1995), CRYSTAL: Inducing a conceptual dictionary. in The Fourteenth International Joint Conference on Artificial Intelligence. Montreal, Canada.

    Google Scholar 

  91. E. Riloff (1993), Automatically constructing a dictionary for information extraction tasks. in The 11th National Conference on Artificial Intelligence. Menlo Park, Calif. 811-816.

    Google Scholar 

  92. J. Kim and D. Moldovan (1993), Acquisition of semantic patterns for information extraction from corpora. in The Ninth IEEE Conference on Artificial Intelligence for Applications.

    Google Scholar 

  93. E. Riloff (1996), Automatically Generating Extraction Patterns from Untagged Text. in The Thirteenth National Conference on Artificial Intelligence (AAAI-96). 1044-1049.

    Google Scholar 

  94. D. Ravichandran and E. Hovy (2002), Learning Surface Text Patterns for a Question Answering System. in Proceedings of the ACL conference. Philadelphia, PA.

    Google Scholar 

  95. D. Feng, D. Ravichandran and E. H. Hovy (2006), Mining and Re-ranking for Answering Biographical Queries on the Web. in Proceedings of the Twenty-First National Conference on Artificial Intelligence.

    Google Scholar 

  96. P. Weiner (1973), Linear Pattern Matching Algorithms. in 14th IEEE Annual Symp. on Switching and Automata Theory. 1-11.

    Google Scholar 

  97. G. S. Mann and D. Yarowsky (2005), Multi-field information extraction and cross-document fusion. in The annual meeting for the Association for Computational Linguistics (ACL-2005). Ann Arbor, MI.

    Google Scholar 

  98. J. Lafferty, A. McCallum and F. Pereira (2001), Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. in Proceedings of the International Conference on Machine Learning.

    Google Scholar 

  99. F. Jiao, S. Wang, C. Lee, R. Greiner and D. Schuurmans (2006), Semi-supervised conditional random fields for improved sequence segmentation and labeling. in The annual meeting for the Association for Computational Linguistics (ACL-2006).

    Google Scholar 

  100. D. Pinto, A. McCallum, X. Wei and W. B. Croft (2003), Table Extraction Using Conditional Random Fields. in Proceedings of the ACM SIGIR.

    Google Scholar 

  101. F. Peng and A. McCallum (2004), Accurate information extraction from research papers using conditional random fields. in Proceedings of HLT-NAACL. 329-336.

    Google Scholar 

  102. P. Blunsom and T. Cohn (2006), Discriminative word alignment with conditional random fields. in The annual meeting for the Association for Computational Linguistics (ACL-2006).

    Google Scholar 

  103. Mallet - Advanced Machine Learning for Language [http://mallet.cs.umass.edu/]

  104. C. Sutton and A. McCallum (2006), An Introduction to Conditional Random Fields for Relational Learning., In, In Introduction to Statistical Relational Learning., MIT Press.

    Google Scholar 

  105. S. Chen and R. Rosenfeld (1999), A Gaussian prior for smoothing maximum entropy models, In, Technical Report CMUCS-99-108,, Carnegie Mellon University.

    Google Scholar 

  106. D. D. Lewis and W. A. Gale (1994), A sequential algorithm for training text classifiers. in International Conference on Research and Development in Information Retrieval (SIGIR 1994). Dublin, Ireland.

    Google Scholar 

  107. S. Tong and D. Koller (2000), Support vector machine active learning with applications to text classification. in Seventeenth International Conference on Machine Learning. Stanford University.

    Google Scholar 

  108. C. A. Thompson, M. E. Califf and R. J. Mooney (1999), Active learning for natural language parsing and information extraction. in The Sixteenth International Conference on Machine Learning. Bled, Slovenia.

    Google Scholar 

  109. M. Tang, X. Luo and S. Roukos (2002), Active learning for statistical natural language parsing. in Annual Meeting of the Association for Computational Linguistics (ACL-02). Pennsylvania, PA.

    Google Scholar 

  110. D. Shen, J. Zhang, J. Su, G. Zhou and C. L. Tan (2004), Multi-criteria-based active learning for named entity recognition. in Annual Meeting of the Association for Computational Linguistics (ACL-04). Barcelona.

    Google Scholar 

  111. J. Chen, A. Schein, L. Ungar and M. Palmer (2006), An empirical study of the behavior of active learning for word sense disambiguation. in Human Language Technology conference - North American chapter of the Association for Computational Linguistics annual meeting (HLT-NAACL) 2006. New York, NY.

    Google Scholar 

  112. T. A. Phelps and R. Wilensky (2001), The Multivalent Browser: A Platform for New Ideas. in Document Engineering 2001. Atlanta, Georgia.

    Google Scholar 

  113. C. B. Saper (1999), J Comp Neurol, 411(1): 1-2

    Article  MathSciNet  Google Scholar 

  114. Vex - A Visual Editor for XML [http://vex.sourceforge.net/]

  115. J.-D. Kim and J. Tsujii (2006), Corpora and their annotation, In, Text Mining for Biology and Biomedicine, Artech House: Boston. 179-212.

    Google Scholar 

  116. L. W. Swanson and G. D. Petrovich (1998), Trends Neurosci, 21(8): 323-31

    Article  Google Scholar 

  117. L. W. Swanson (2000), Trends Neurosci, 23(11): 519-27

    Article  Google Scholar 

  118. S. Ananiadou, C. Friedman and J. Tsujii. (2004), Journal of Biomedical Informatics, 37: 393-395

    Article  Google Scholar 

  119. M. Krauthammer and G. Nedadic (2005), Journal of Biomedical Informatics, 37: 512-526

    Article  Google Scholar 

  120. L. W. Swanson (2004), Brain Maps: Structure of the Rat Brain. 3 ed. ed. Vol., San Diego: Elsevier Academic Press.

    Google Scholar 

  121. O. Bodenreider (2006), Lexical, Terminological and Ontological Resources for Biological Text Mining, In, Text Mining for Biology and Biomedicine, Artech House: London.

    Google Scholar 

  122. MiniPar home page [http://www.cs.ualberta.ca/~lindek/minipar.htm]

  123. S. Dingare, J. Finkel, M. Nissim, C. Manning and C. Grover (2004), A System For Identifying Named Entities in Biomedical Text: How Results From Two Evaluations Reflect on Both the System and the Evaluations. in 2004 BioLink meeting: Linking Literature, Information and Knowledge for Biology at ISMB 2004. http://nlp.stanford.edu/manning/papers/ismb2004.pdf.

  124. R. Rodriguez-Esteban, I. Iossifov and A. Rzhetsky (2006), PLoS Comput Biol, 2(9):

    Google Scholar 

  125. J. Fleiss (1971), Psychological Bulletin, 76: 378-81

    Article  Google Scholar 

  126. C. Manning and S. H (1999), Foundations of Statistical Natural Language Processing. ed. ed. Vol.: MIT Press.

    Google Scholar 

  127. D. Jurafsky and J. H. Martin (2000), Speech and Language Processing. An introduction to Natural Language Processing, Computational Linguistics and Speech Recognition. ed. ed. Vol., Upper Saddle River, NJ: Prentice-Hall, Inc.

    Google Scholar 

  128. L. Hirschman, A. Yeh, C. Blaschke and A. Valencia (2005), BMC Bioinformatics, 6 Suppl 1: S1

    Article  Google Scholar 

  129. L. Adelman and S. L. Riedel (1997), Handbook For Evaluating Knowledge-Based Systems. ed. ed. Vol., Boston: Kluwer Academic Publishers.

    Google Scholar 

  130. The NeuroScholar SourceForge Project Page [http://www.sourceforge.net/projects/neuroscholar]

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Burns, G.A.P.C., Feng, D., Hovy, E. (2008). Intelligent Approaches to Mining the Primary Research Literature: Techniques, Systems, and Examples. In: Kelemen, A., Abraham, A., Liang, Y. (eds) Computational Intelligence in Medical Informatics. Studies in Computational Intelligence, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75767-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75767-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75766-5

  • Online ISBN: 978-3-540-75767-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics