High quality and innovation are major selling points in the technology market. Continuous improvement of products and the introduction of completely new products are a day to day challenge that industry has to face to keep competitive in a dynamic market. Customers desire changes when new materials and technologies become available. Consequently, new production views such as the whole life cycle cost of a product become an issue in industry. Keeping up with these changes is difficult and the application of the most recent technologies in a sound and effective way is often not straight forward. Academia is one of the sources of novel and scientifically well founded technologies. Furthermore, academia has a rich pool of thoroughly tested methods, well educated students and professional academics to deliver these methods. Technology transfer between academia and industry, therefore, is a productive way to bridge the gap between ‘mysterious’ theory and ‘plain’ practice. Various aspects of this transfer are discussed in this chapter. The most recent technology of multi-objective optimization is introduced to illustrate the challenges that come along with the cooperation between academia and industry.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
D.F. Andrews (1972) Plots of High-Dimensional Data Biometrika 28:125-136
J. Argyris and G. Faust, and M. Haasse (1994) An Exploration of Chaos. North-Holland Publishing, NL.
Th. Bäck, D. B. Fogel, and T. Michalewicz (2000) Evolutionary Computation 1 and 2, Institute of Physical Publishing IoP, Bristol, UK
Th. Bartz-Beielstein (2006) Experimental Research in Evolutionary Computation: The New Experimentalism Natural Computing Series, Springer, Berlin.
P.T. Boggs, T.W. Tollw (1996) Sequential Quadratic Programming. Acta Numerica, 4,1-51
J. Branke and K. Deb. (2005) Integrating User Preferences into Evolutionary Multi-Objective Optimization. In Y. Jin (editor), Knowledge Incorporation in Evolutionary Computation, Springer, pp. 461-477, Berlin Heidelberg.
P. Brmaud (1999) Markov Chains, Gibbs Fields, Monte Carlo Simulation, and Queues. Springer, New York
P. Chootinan and A. Chen (2006) Constraint Handling In Genetic Algorithms Using A Gradient-Based Repair Method. Computers and Operations Reseach. 33(8):2263-2281.
C. Coello Coello (1999) A Survey of Constraint Handling Techniques used with Evolutionary Algorithms. Technical Report Lania-RI-9904, Laboratorio, Nacional de Informtica Avanzada.
Y. Collette and P. Siarry (2003) Multiobjective Optimization: Principles and Case Studies. Decision Engineering Series. Springer, Berlin.
D.W. Corne, J.D. Knowles, and M.J. Oates (2000) The Pareto Envelope–based Selection Algorithm for Multiobjective Optimization. Proceedings of the Parallel Problem Solving from Nature VI, M. Schoenauer et al. (eds.), Springer, Berlin, pp. 839-848.
K. Deb (2001) Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley, Chichester, UK
K. Deb, M. Mohan, M. and A. Mishra (2003). A Fast Multi-objective Evolutionary Algorithm for Finding Well-Spread Pareto-Optimal Solutions. KanGAL Report No. 2003002.
K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan (2000) A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. Proceedings of the Parallel Problem Solving from Nature VI Conference, Springer. Lecture Notes in Computer Science, No. 1917, Paris, France, M. Schoenauer et al. (eds.), pp. 849-858.
K. Deb and S. Tiwari (2005) Omni-optimizer: A Procedure for Single and Multi-objective Optimization. Evolutionary Multi-Criterion Optimization. Third International Conference, EMO 2005. C. A. Coello Coello et al. (eds.), pp. 47-61, Springer. Lecture Notes in Computer Science Vol. 3410.
S. Droste, Th. Jansen, and I. Wegener (2002) Optimization with randomized search heuristics - the (A)NFL theorem, realistic scenarios, and difficult functions, Theoretical Computer Science, 287, pp. 131-144.
M. Ehrgott (2005) Multicriteria Optimization. 2nd edition, Springer, Berlin.
M. Emmerich, N. Beume, and B. Naujoks (2005). Multi-objective optimisation using S-metric selection: Application to three-dimensional solution spaces. In B. McKay et al., Eds., Proc. of the 2005 Congress on Evolutionary Computation (CEC 2005), Edinburgh, Band 2, pp. 1282-1289. IEEE Press, Piscataway, NJ, USA.
J. Ester (1987) Systemanalyse und mehrkriterielle Entscheidung. VEB Verlag Technik, Vol. 1, Berlin, Germany.
J. Fliege (2001) Approximation Techniques for the Set of Efficient Points. Habilitation, Dortmund, Germany.
D. B. Fogel (1991) System Identification through Simulated Evolution: A Machine Learning Approach to Modeling. Ginn Press, Needham Heights, MA, USA.
C.M. Fonseca and P.J. Fleming (1993). Multiobjective Genetic Algorithms. In IEE Colloquium on Genetic Algorithms for Control Systems Engineering, pp. 6/1–6/5, IEE, UK.
O. Francois and C. Lavergne (2001) Design of evolutionary algorithms - A statistical perspective. IEEE Transactions on Evolutionary Computation, Vol. 5, No. 2. pp. 129-148.
N. Gerschenfield (1998) The Nature of Mathematical Modeling. Cambridge Univ. Press, UK
D.P. Giesy (1978) Calculations of Pareto Optimal Solutions to Multiple Objective Problems using Threshold of Acceptance Constraints. IEEE Transactions on Automatic Control, AC-23(6):1114-1115.
D. E. Goldberg (1989) Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley, Reading, USA.
M. B. Gorzalczany (2002) Computational Intelligence Systems and Applications: Neuro-fuzzy and Fuzzy Neural Synergisms. Studies in Fuzziness & Soft Computing, Physica, Heidelberg, Germany.
Y.Y. Haimes, L.S. Lasdon, and D.A. Wismer (1971) On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Transactions on Systems, Man, and Cybernetics, Vol. 1, pp. 296-297.
E.R. Harold, W.S. Means (2004), XML in a Nutshell, O’Reilly
N. Hansen and A. Ostermeier (2001). Completely Derandomized SelfAdaptation in Evolution Strategies. Evolutionary Computation, 9(2), pp. 159-195.
C. Hillermeier (2001) Nonlinear multiobjective optimization: a generalized homotopy approach. Birkhuser Verlag, 135, International series of numerical mathematics, Basel, Switzerland.
F. Jarre and J. Stoer (2003) Optimierung, Springer, Berlin.
R.L. Keeney and H. Raiffa (1993) Decisions with Multiple Objectives: Preferences and Value Tradeoff. Cambridge University Press, Cambridge, UK.
R. Khattree and C.R. Rao (2003) Handbook of Statistics. Vol. 22, North-Holland Pub., NL
J.D. Knowles and D.W. Corne (1999) The Pareto Archived Evolution Strategy: A New Baseline Algorithm for Pareto Multiobjective Optimisation. In Proceedings of the 1999 Congress on Evolutionary Computation (CEC’99), pp. 98-105
J. Koza (1992) Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, USA.
J.C. Lagarias, J.A. Reeds, M.H. Wright, P.E. Wright (1998) Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Opt. 9(1):112-147
J.G. Lin (1976) Multipleobjective problems: Paretooptimal solutions by proper equality constraints. IEEE Transactions on Automatic Control, 5(AC21):641-650.
R. Luus and K. Sabaliauskas, and I. Harapyn (2006). Handling Inequality Constraints in Direct Search Optimization. Engineering Optimization, 38(4):391-405
J. Mehnen (2005) M ehrkriterielle Optimierverfahren fr produktionstechnische Prozesse. Habilitationsschrift, Universitt Dortmund, Vulkan Verlag, Essen, Germany.
J. Mehnen, Th. Michelitsch, and C. Witt (2007) Collaborative Research Centre 531: Computational Intelligence - Theory and Practice. Oldenbourg Wissenschaftsverlag, Munich, Germany, it - Information Technology. 49(1): 49-57.
J. Mehnen, H. Trautmann (2006) Integration of Expert’s Preferences in Pareto Optimization by Desirability Function Techniques. In: Proceedings of the 5th CIRP International Seminar on Intelligent Computation in Manufacturing Engineering (CIRP ICME ’06), Ischia, Italy, R. Teti (ed.), pp. 293-298, Copyright C.O.C. Com. org. Conv.
E. Mezura-Montes, C. Coello Coello (2006) A Survey of Constraint-Handling Techniques Based on Evolutionary Multiobjective Optimization. Workshop paper at PPSN 2006, Iceland.
Z. Michalewicz (1995) A survey of constraint handling techniques in evolutionary computation methods, Proc. of the 4th Annual Conf. on Evolutionary Programming, MIT Press, Cambridge, MA, J. R. McDonnell, R. G. Reynolds, and D. B. Fogel (Eds), pp. 135-155.
K. Miettinen (1998) Nonlinear Multiobjective Optimization. International Series in Operations Research & Management Science, Kluwer Academic Publishers, Dordrecht, NL.
C. Murat and V. Th. Paschos (2006) Probabilistic Combinatorial Optimization on Graphs. ISTE Publishing Company, Washington, DC, USA.
J.A. Nelder and R. Mead (1965) A simplex method for function minimization, Comp. Journal, 7:308-313
V. Oduguwa, R. Roy and D. Farrugia (2007) Development of a soft computing based framework for engineering design optimisation with quantitative and qualitative search spaces. Applied Soft Computing, 7(1):166-188.
H. Rinne (2003) Taschnenbuch der Statistik, Harri Deutsch Verlag
K. Schmitt, J. Mehnen, and Thomas Michelitsch (2005). Using Predators and Preys in Evolution Strategies, in Hans-Georg Beyer et al. (editors), 2005 Genetic and Evolutionary Computation Conference (GECCO’2005) , pp. 827-828, Vol. 1, ACM Press, NY, USA
H.-P. Schwefel (1995) Evolution and Optimum Seeking. Wiley-Interscience, NY, USA.
STEP International Organization for Standardization (1994) ISO 10303-42, Int‘l. Organization for Standardization, Vol. 42, Switzerland
D. Tabak (1979) Computer Based Experimentation with Multicriteria Optimization Problems. IEEE Transactions on Systems, Man and Cybernetics, SMC9 (10):676-679.
V. T’kindt and J.-Ch. Billaut (2006) Multicriteria Scheduling: Theory, Models and Algorithms. Springer, Berlin.
H., Trautmann, C. Weihs (2006) On the distribution of the desirability function index using Harrington’s desirability function. Metrika, 62(2):207-213.
US PRO (1993) IGES 5.2 An American National Standard, ANS US PRO-IPO-100-1993, U.S. Product Data Association, Gaithersburg, MD, USA
D. H. Wolpert, and W. G. Macready (1995) No Free Lunch Theorems for Search. Technical Report SFI-TR-95-02-010. Sante Fe, NM, USA: Santa Fe Institute.
M. Zeleny (1982) Multiple Criteria Decision Making. McGraw-Hill, New York, USA.
E. Zitzler, M. Laumanns, and L. Thiele (2001) SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Technical Report No. 103, Computer Engineering and Communication Networks Lab (TIK), ETH Zrich, Switzerland.
J.B. Zydallis, D.A. van Veldhuizen, and G. Lamont (2001) A Statistical Comparison of Multiobjective Evolutionary Algorithms including the MOMGA-II. Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization, pp. 226-240, E. Zitzler et al. (eds.) Vol. 1993, Lecture Notes in Computer Science, Springer, Berlin.
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Mehnen, J., Roy, R. (2008). Technology Transfer: Academia to Industry. In: Yu, T., Davis, L., Baydar, C., Roy, R. (eds) Evolutionary Computation in Practice. Studies in Computational Intelligence, vol 88. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75771-9_12
Download citation
DOI: https://doi.org/10.1007/978-3-540-75771-9_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75770-2
Online ISBN: 978-3-540-75771-9
eBook Packages: EngineeringEngineering (R0)