Skip to main content

Technology Transfer: Academia to Industry

  • Chapter
Evolutionary Computation in Practice

Part of the book series: Studies in Computational Intelligence ((SCI,volume 88))

  • 651 Accesses

High quality and innovation are major selling points in the technology market. Continuous improvement of products and the introduction of completely new products are a day to day challenge that industry has to face to keep competitive in a dynamic market. Customers desire changes when new materials and technologies become available. Consequently, new production views such as the whole life cycle cost of a product become an issue in industry. Keeping up with these changes is difficult and the application of the most recent technologies in a sound and effective way is often not straight forward. Academia is one of the sources of novel and scientifically well founded technologies. Furthermore, academia has a rich pool of thoroughly tested methods, well educated students and professional academics to deliver these methods. Technology transfer between academia and industry, therefore, is a productive way to bridge the gap between ‘mysterious’ theory and ‘plain’ practice. Various aspects of this transfer are discussed in this chapter. The most recent technology of multi-objective optimization is introduced to illustrate the challenges that come along with the cooperation between academia and industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • D.F. Andrews (1972) Plots of High-Dimensional Data Biometrika 28:125-136

    Google Scholar 

  • J. Argyris and G. Faust, and M. Haasse (1994) An Exploration of Chaos. North-Holland Publishing, NL.

    Google Scholar 

  • Th. Bäck, D. B. Fogel, and T. Michalewicz (2000) Evolutionary Computation 1 and 2, Institute of Physical Publishing IoP, Bristol, UK

    Google Scholar 

  • Th. Bartz-Beielstein (2006) Experimental Research in Evolutionary Computation: The New Experimentalism Natural Computing Series, Springer, Berlin.

    Google Scholar 

  • P.T. Boggs, T.W. Tollw (1996) Sequential Quadratic Programming. Acta Numerica, 4,1-51

    Article  Google Scholar 

  • J. Branke and K. Deb. (2005) Integrating User Preferences into Evolutionary Multi-Objective Optimization. In Y. Jin (editor), Knowledge Incorporation in Evolutionary Computation, Springer, pp. 461-477, Berlin Heidelberg.

    Google Scholar 

  • P. Brmaud (1999) Markov Chains, Gibbs Fields, Monte Carlo Simulation, and Queues. Springer, New York

    Google Scholar 

  • P. Chootinan and A. Chen (2006) Constraint Handling In Genetic Algorithms Using A Gradient-Based Repair Method. Computers and Operations Reseach. 33(8):2263-2281.

    Article  MATH  Google Scholar 

  • C. Coello Coello (1999) A Survey of Constraint Handling Techniques used with Evolutionary Algorithms. Technical Report Lania-RI-9904, Laboratorio, Nacional de Informtica Avanzada.

    Google Scholar 

  • Y. Collette and P. Siarry (2003) Multiobjective Optimization: Principles and Case Studies. Decision Engineering Series. Springer, Berlin.

    Google Scholar 

  • D.W. Corne, J.D. Knowles, and M.J. Oates (2000) The Pareto Envelope–based Selection Algorithm for Multiobjective Optimization. Proceedings of the Parallel Problem Solving from Nature VI, M. Schoenauer et al. (eds.), Springer, Berlin, pp. 839-848.

    Chapter  Google Scholar 

  • K. Deb (2001) Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley, Chichester, UK

    MATH  Google Scholar 

  • K. Deb, M. Mohan, M. and A. Mishra (2003). A Fast Multi-objective Evolutionary Algorithm for Finding Well-Spread Pareto-Optimal Solutions. KanGAL Report No. 2003002.

    Google Scholar 

  • K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan (2000) A Fast Elitist Non-Dominated Sorting Genetic Algorithm for Multi-Objective Optimization: NSGA-II. Proceedings of the Parallel Problem Solving from Nature VI Conference, Springer. Lecture Notes in Computer Science, No. 1917, Paris, France, M. Schoenauer et al. (eds.), pp. 849-858.

    Chapter  Google Scholar 

  • K. Deb and S. Tiwari (2005) Omni-optimizer: A Procedure for Single and Multi-objective Optimization. Evolutionary Multi-Criterion Optimization. Third International Conference, EMO 2005. C. A. Coello Coello et al. (eds.), pp. 47-61, Springer. Lecture Notes in Computer Science Vol. 3410.

    Google Scholar 

  • S. Droste, Th. Jansen, and I. Wegener (2002) Optimization with randomized search heuristics - the (A)NFL theorem, realistic scenarios, and difficult functions, Theoretical Computer Science, 287, pp. 131-144.

    Article  MATH  MathSciNet  Google Scholar 

  • M. Ehrgott (2005) Multicriteria Optimization. 2nd edition, Springer, Berlin.

    MATH  Google Scholar 

  • M. Emmerich, N. Beume, and B. Naujoks (2005). Multi-objective optimisation using S-metric selection: Application to three-dimensional solution spaces. In B. McKay et al., Eds., Proc. of the 2005 Congress on Evolutionary Computation (CEC 2005), Edinburgh, Band 2, pp. 1282-1289. IEEE Press, Piscataway, NJ, USA.

    Google Scholar 

  • J. Ester (1987) Systemanalyse und mehrkriterielle Entscheidung. VEB Verlag Technik, Vol. 1, Berlin, Germany.

    MATH  Google Scholar 

  • J. Fliege (2001) Approximation Techniques for the Set of Efficient Points. Habilitation, Dortmund, Germany.

    Google Scholar 

  • D. B. Fogel (1991) System Identification through Simulated Evolution: A Machine Learning Approach to Modeling. Ginn Press, Needham Heights, MA, USA.

    Google Scholar 

  • C.M. Fonseca and P.J. Fleming (1993). Multiobjective Genetic Algorithms. In IEE Colloquium on Genetic Algorithms for Control Systems Engineering, pp. 6/1–6/5, IEE, UK.

    Google Scholar 

  • O. Francois and C. Lavergne (2001) Design of evolutionary algorithms - A statistical perspective. IEEE Transactions on Evolutionary Computation, Vol. 5, No. 2. pp. 129-148.

    Article  Google Scholar 

  • N. Gerschenfield (1998) The Nature of Mathematical Modeling. Cambridge Univ. Press, UK

    Google Scholar 

  • D.P. Giesy (1978) Calculations of Pareto Optimal Solutions to Multiple Objective Problems using Threshold of Acceptance Constraints. IEEE Transactions on Automatic Control, AC-23(6):1114-1115.

    Article  MathSciNet  Google Scholar 

  • D. E. Goldberg (1989) Genetic Algorithms in Search, Optimization and Machine Learning. Addison Wesley, Reading, USA.

    MATH  Google Scholar 

  • M. B. Gorzalczany (2002) Computational Intelligence Systems and Applications: Neuro-fuzzy and Fuzzy Neural Synergisms. Studies in Fuzziness & Soft Computing, Physica, Heidelberg, Germany.

    MATH  Google Scholar 

  • Y.Y. Haimes, L.S. Lasdon, and D.A. Wismer (1971) On a bicriterion formulation of the problems of integrated system identification and system optimization. IEEE Transactions on Systems, Man, and Cybernetics, Vol. 1, pp. 296-297.

    Article  MATH  MathSciNet  Google Scholar 

  • E.R. Harold, W.S. Means (2004), XML in a Nutshell, O’Reilly

    Google Scholar 

  • N. Hansen and A. Ostermeier (2001). Completely Derandomized SelfAdaptation in Evolution Strategies. Evolutionary Computation, 9(2), pp. 159-195.

    Article  Google Scholar 

  • C. Hillermeier (2001) Nonlinear multiobjective optimization: a generalized homotopy approach. Birkhuser Verlag, 135, International series of numerical mathematics, Basel, Switzerland.

    Google Scholar 

  • F. Jarre and J. Stoer (2003) Optimierung, Springer, Berlin.

    Google Scholar 

  • R.L. Keeney and H. Raiffa (1993) Decisions with Multiple Objectives: Preferences and Value Tradeoff. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • R. Khattree and C.R. Rao (2003) Handbook of Statistics. Vol. 22, North-Holland Pub., NL

    Google Scholar 

  • J.D. Knowles and D.W. Corne (1999) The Pareto Archived Evolution Strategy: A New Baseline Algorithm for Pareto Multiobjective Optimisation. In Proceedings of the 1999 Congress on Evolutionary Computation (CEC’99), pp. 98-105

    Google Scholar 

  • J. Koza (1992) Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, USA.

    MATH  Google Scholar 

  • J.C. Lagarias, J.A. Reeds, M.H. Wright, P.E. Wright (1998) Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Opt. 9(1):112-147

    Article  MATH  MathSciNet  Google Scholar 

  • J.G. Lin (1976) Multipleobjective problems: Paretooptimal solutions by proper equality constraints. IEEE Transactions on Automatic Control, 5(AC21):641-650.

    Google Scholar 

  • R. Luus and K. Sabaliauskas, and I. Harapyn (2006). Handling Inequality Constraints in Direct Search Optimization. Engineering Optimization, 38(4):391-405

    Article  MathSciNet  Google Scholar 

  • J. Mehnen (2005) M ehrkriterielle Optimierverfahren fr produktionstechnische Prozesse. Habilitationsschrift, Universitt Dortmund, Vulkan Verlag, Essen, Germany.

    Google Scholar 

  • J. Mehnen, Th. Michelitsch, and C. Witt (2007) Collaborative Research Centre 531: Computational Intelligence - Theory and Practice. Oldenbourg Wissenschaftsverlag, Munich, Germany, it - Information Technology. 49(1): 49-57.

    Article  Google Scholar 

  • J. Mehnen, H. Trautmann (2006) Integration of Expert’s Preferences in Pareto Optimization by Desirability Function Techniques. In: Proceedings of the 5th CIRP International Seminar on Intelligent Computation in Manufacturing Engineering (CIRP ICME ’06), Ischia, Italy, R. Teti (ed.), pp. 293-298, Copyright C.O.C. Com. org. Conv.

    Google Scholar 

  • E. Mezura-Montes, C. Coello Coello (2006) A Survey of Constraint-Handling Techniques Based on Evolutionary Multiobjective Optimization. Workshop paper at PPSN 2006, Iceland.

    Google Scholar 

  • Z. Michalewicz (1995) A survey of constraint handling techniques in evolutionary computation methods, Proc. of the 4th Annual Conf. on Evolutionary Programming, MIT Press, Cambridge, MA, J. R. McDonnell, R. G. Reynolds, and D. B. Fogel (Eds), pp. 135-155.

    Google Scholar 

  • K. Miettinen (1998) Nonlinear Multiobjective Optimization. International Series in Operations Research & Management Science, Kluwer Academic Publishers, Dordrecht, NL.

    Google Scholar 

  • C. Murat and V. Th. Paschos (2006) Probabilistic Combinatorial Optimization on Graphs. ISTE Publishing Company, Washington, DC, USA.

    Google Scholar 

  • J.A. Nelder and R. Mead (1965) A simplex method for function minimization, Comp. Journal, 7:308-313

    MATH  Google Scholar 

  • V. Oduguwa, R. Roy and D. Farrugia (2007) Development of a soft computing based framework for engineering design optimisation with quantitative and qualitative search spaces. Applied Soft Computing, 7(1):166-188.

    Article  Google Scholar 

  • H. Rinne (2003) Taschnenbuch der Statistik, Harri Deutsch Verlag

    Google Scholar 

  • K. Schmitt, J. Mehnen, and Thomas Michelitsch (2005). Using Predators and Preys in Evolution Strategies, in Hans-Georg Beyer et al. (editors), 2005 Genetic and Evolutionary Computation Conference (GECCO’2005) , pp. 827-828, Vol. 1, ACM Press, NY, USA

    Chapter  Google Scholar 

  • H.-P. Schwefel (1995) Evolution and Optimum Seeking. Wiley-Interscience, NY, USA.

    Google Scholar 

  • STEP International Organization for Standardization (1994) ISO 10303-42, Int‘l. Organization for Standardization, Vol. 42, Switzerland

    Google Scholar 

  • D. Tabak (1979) Computer Based Experimentation with Multicriteria Optimization Problems. IEEE Transactions on Systems, Man and Cybernetics, SMC9 (10):676-679.

    Google Scholar 

  • V. T’kindt and J.-Ch. Billaut (2006) Multicriteria Scheduling: Theory, Models and Algorithms. Springer, Berlin.

    MATH  Google Scholar 

  • H., Trautmann, C. Weihs (2006) On the distribution of the desirability function index using Harrington’s desirability function. Metrika, 62(2):207-213.

    Article  MathSciNet  Google Scholar 

  • US PRO (1993) IGES 5.2 An American National Standard, ANS US PRO-IPO-100-1993, U.S. Product Data Association, Gaithersburg, MD, USA

    Google Scholar 

  • D. H. Wolpert, and W. G. Macready (1995) No Free Lunch Theorems for Search. Technical Report SFI-TR-95-02-010. Sante Fe, NM, USA: Santa Fe Institute.

    Google Scholar 

  • M. Zeleny (1982) Multiple Criteria Decision Making. McGraw-Hill, New York, USA.

    MATH  Google Scholar 

  • E. Zitzler, M. Laumanns, and L. Thiele (2001) SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Technical Report No. 103, Computer Engineering and Communication Networks Lab (TIK), ETH Zrich, Switzerland.

    Google Scholar 

  • J.B. Zydallis, D.A. van Veldhuizen, and G. Lamont (2001) A Statistical Comparison of Multiobjective Evolutionary Algorithms including the MOMGA-II. Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization, pp. 226-240, E. Zitzler et al. (eds.) Vol. 1993, Lecture Notes in Computer Science, Springer, Berlin.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mehnen, J., Roy, R. (2008). Technology Transfer: Academia to Industry. In: Yu, T., Davis, L., Baydar, C., Roy, R. (eds) Evolutionary Computation in Practice. Studies in Computational Intelligence, vol 88. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75771-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75771-9_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75770-2

  • Online ISBN: 978-3-540-75771-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics