Abstract
Variable population sizing techniques are rarely considered in the theory of Genetic Algorithms. This paper discusses a new variant of adaptive population sizing for this class of Evolutionary Algorithms. The basic idea is to adapt the actual population size depending on the actual ease or difficulty of the algorithm in its ultimate goal to generate new child chromosomes that outperform their parents.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Affenzeller, M., Wagner, S.: SASEGASA: A New Generic Parallel Evolutionary Algorithm for Achieving Highest Quality Results. Journal of Heuristics, Special Issue on New Advances on Parallel Meta-Heuristics for Complex Problems 10(3), 239–263 (2004)
Affenzeller, M., Wagner, S.: Offspring Selection: A New Self-Adaptive Selection Scheme for Genetic Algorithms. Adaptive and Natural Computing Algorithms, 218–221 (2005)
Arabas, J., Michalewicz, Z., Mulawka, J.: GAVaPS – A Genetic Algorithm with Varying Population Size. In: Proceedings of the First IEEE Conference on Evolutionary Computation, pp. 73–78. IEEE Computer Society Press, Los Alamitos (1994)
Baeck, T., Eiben, A.E., van der Vaart, N.A.L.: An Empirical Study on GAs Without Parameters. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) Parallel Problem Solving from Nature-PPSN VI. LNCS, vol. 1917, pp. 315–324. Springer, Heidelberg (2000)
Beyer, H.G.: The Theory of Evolution Strategies. Springer, Heidelberg (2001)
Eiben, A.E., Marchiori, E., Valk, V.A.: Evolutionary Algorithms with On-the-Fly Population Size Adjustment. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature - PPSN VIII. LNCS, vol. 3242, pp. 41–50. Springer, Heidelberg (2004)
Fogel, D.: An Introduction to Simulated Evolutionary Optimization. IEEE Trans. on Neural Networks 5(1), 3–14 (1994)
Goldberg, D.E.: Sizing Populations for Serial and Parallel Genetic Algorithms. In: Proceedings of the 3rd International Conference on Genetic Algorithms, pp. 70–79 (1989)
Reinelt, G.: TSPLIB - A Traveling Salesman Problem Library. ORSA Journal on Computing 3, 376–384 (1991)
Smith, R., Forrest, S., Perelson, A.: Population Diversity in an Immune System Model: Implications for Genetic Search. Foundations of Genetic Algorithms 2, 153–166 (1993)
Yoshida, Y., Adachi, N.: A Diploid Genetic Algorithm for Preserving Population Diversity - Pseudo-Meiosis GA. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature - PPSN III. LNCS, vol. 866, pp. 36–45. Springer, Heidelberg (1994)
Winkler, S., Affenzeller, M., Wagner, S.: Advanced Genetic Programming Based Machine Learning. Journal of Mathematical Modelling and Algorithms (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Affenzeller, M., Wagner, S., Winkler, S. (2007). Self-adaptive Population Size Adjustment for Genetic Algorithms. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2007. EUROCAST 2007. Lecture Notes in Computer Science, vol 4739. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75867-9_103
Download citation
DOI: https://doi.org/10.1007/978-3-540-75867-9_103
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75866-2
Online ISBN: 978-3-540-75867-9
eBook Packages: Computer ScienceComputer Science (R0)