Skip to main content

Texture-Based Filtering and Front-Propagation Techniques for the Segmentation of Ultrasound Images

  • Conference paper
Computer Aided Systems Theory – EUROCAST 2007 (EUROCAST 2007)

Abstract

Ultrasound imaging segmentation is a common method used to help in the diagnosis in multiple medical disciplines. This medical image modality is particularly difficult to segment and analyze since the quality of the images is relatively low, because of the presence of speckle noise. In this paper we present a set of techniques, based on texture findings, to increase the quality of the images. We characterize the ultrasound image texture by a vector of responses to a set of Gabor filters. Also, we combine front-propagation and active contours segmentation methods to achieve a fast accurate segmentation with the minimal expert intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Erikson, K.R., Fry, F.J., Jones, J.P.: Ultrasound in medicine-a review. IEEE Transactions on Sonics and Ultrasonics 21(3), 144–170 (1974)

    Google Scholar 

  2. Stavros, A.T., Thickman, D., Rapp, C.L., Dennis, M.A., Parker, S.H., Sisney, G.A.: Solid breast nodules: use of sonography to distinguish between benign and malignant lesions. Radiology 196, 123–134 (1995)

    Google Scholar 

  3. Davies, E.R.: On the noise suppression and image enhancement characteristics of the median, truncated median and mode filters. Pattern Recogn. Lett. 7(2), 87–97 (1988)

    Article  Google Scholar 

  4. Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(7), 629–639 (1990)

    Article  Google Scholar 

  5. Yu, Y., Acton, S.T.: Speckle reducing anisotropic diffusion. IEEE Transactions on Image Processing 11(11), 1260–1270 (2002)

    Article  MathSciNet  Google Scholar 

  6. Voci, F., Eiho, S., Sugimoto, N., Sekibuchi, H.: Estimating the gradient in the perona-malik equation. IEEE Signal Processing Magazine 21(3), 39–65 (2004)

    Article  Google Scholar 

  7. Daugman, J.G.: Complete discrete 2-d gabor transforms by neural networks for image analysis and compression. IEEE Transactions on Acoustics, Speech and Signal Processing 36(7), 1169–1179 (1988)

    Article  MATH  Google Scholar 

  8. Bovik, A.C., Clark, M., Geisler, W.S.: Multichannel texture analysis using localized spatial filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(1), 55–73 (1990)

    Article  Google Scholar 

  9. Weldon, T.P., Higgins, W.E.: Design of Multiple Gabor Filters for Texture Segmentation. vol. 4, pp. 2243–2246 (1996)

    Google Scholar 

  10. Dunn, D., Higgings, W.E.: Optimal gabor filters for texture segmentation. IEEE Transactions on Image Processing 4(7), 947–964 (1995)

    Article  Google Scholar 

  11. Anil, K., Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using gabor filters. Pattern Recogn. 24(12), 1167–1186 (1990)

    Google Scholar 

  12. Mohamed, S.S., Abdel-galil, T.K., Salama, M.M.A., Fenster, A., Rizkalla, K., Downey, D.B.: Prostate cancer diagnosis based on gabor filter texture segmentation of ultrasound image. In: CCECE 2003, vol. 3, pp. 1485–1488 (2003)

    Google Scholar 

  13. Xie, J., Jiang, Y., Hung-Tat, T.: Segmentation of kidney from ultrasound images based on texture and shape priors. IEEE transactions on medical imaging 24, 45–57 (2005)

    Article  Google Scholar 

  14. Gabor, D.: Theory of communication. Journ. of Inst. Electrical Engineers 93(26), 429–457 (1946)

    Google Scholar 

  15. De Valois, R.L., De Valois, K.K.: Spatial Vision. Oxford University Press, Oxford (1988)

    Google Scholar 

  16. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: ICCV, pp. 694–699 (1995)

    Google Scholar 

  17. Sato, M., Lakare, S., Wan, M., Kaufman, A., Nakajima, M.: A gradient magnitude based region growing algorithm for accurate segmentation. In: Proceedings of the International Conference on Image Processing, vol. 3, pp. 448–451 (2000)

    Google Scholar 

  18. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Roberto Moreno Díaz Franz Pichler Alexis Quesada Arencibia

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Alemán-Flores, M., Alemán-Flores, P., Álvarez-León, L., Esteban-Sánchez, M.B., Fuentes-Pavón, R., Santana-Montesdeoca, J.M. (2007). Texture-Based Filtering and Front-Propagation Techniques for the Segmentation of Ultrasound Images. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2007. EUROCAST 2007. Lecture Notes in Computer Science, vol 4739. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75867-9_120

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75867-9_120

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75866-2

  • Online ISBN: 978-3-540-75867-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics