Abstract
This paper presents a problem-solving framework based on robust evolutionary search in GRID computing environment. Our problem-solving environment called virtual innovative laboratory performs simulator programs in parallel and optimize their input parameters employing a competent evolutionary algorithm with gene analysis. The objective of our project is to replace a part of human designer’s try-and-error processes by a parallel and robust evolutionary search on GRID computing systems.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Czyzyk, J., Mesnier, M., More, J.: The NEOS server. IEEE Journal on Computational Science and Engineering 5, 68–75 (1998)
Dolan, E.: The NEOS server 4.0 administrative guide. Technical Memorandum ANL/MCS-TM-250, Mathematics and Computer Science Division, Argonne National Laboratory, May, Discusses the Server implementation and use in detail (2001)
Foster, I.: Globus toolkit version 4: Software for service-oriented systems. In: Jin, H., Reed, D., Jiang, W. (eds.) NPC 2005. LNCS, vol. 3779, pp. 2–13. Springer, Heidelberg (2005)
Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Morgan-Kaufman, San Francisco (1999)
Gropp, W., Mor’e, J.: Optimization environments and the neos server (1997)
Hoos, H.H., Stützle, T.: SATLIB: An Online Resource for Research on SAT, pp. 283–292
Munetomo, M., Goldberg, D.E.: Identifying linkage groups by nonlinearity/non-monotonicity detection. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, vol. 1, pp. 433–440. Morgan Kaufmann, Orlando, Florida, USA (1999)
Munetomo, M., Murao, N., Akama, K.: A parallel genetic algorithm based on linkage identification. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 1222–1233. Springer, Heidelberg (2003)
Tsuji, M.: Designing Genetic Algorithm Based on Exploration and Exploitation of Gene Linkage. PhD thesis, Hokkaido University, Sapporo, Japan (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Munetomo, M., Munawar, A., Akama, K. (2007). A Framework of GRID Problem-Solving Environment Employing Robust Evolutionary Search. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2007. EUROCAST 2007. Lecture Notes in Computer Science, vol 4739. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75867-9_60
Download citation
DOI: https://doi.org/10.1007/978-3-540-75867-9_60
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75866-2
Online ISBN: 978-3-540-75867-9
eBook Packages: Computer ScienceComputer Science (R0)