Skip to main content

Compressing Propositional Proofs by Common Subproof Extraction

  • Conference paper
Computer Aided Systems Theory – EUROCAST 2007 (EUROCAST 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4739))

Included in the following conference series:

Abstract

Propositional logic decision procedures [1,2,3,4,5,6] lie at the heart of many applications in hard- and software verification, artificial intelligence and automatic theorem proving [7,8,9,10,11,12]. They have been used to successfully solve problems of considerable size. In many practical applications, however, it is not sufficient to obtain a yes/no answer from the decision procedure. Either a model, representing a sample solution, or a justification, why the formula possesses none is required. So, e.g. in declarative modeling or product configuration [9,10] an inconsistent specification given by a customer corresponds to an unsatisfiable problem instance. To guide the customer in correcting his specification, a justification why it is erroneous can be of great help. In the context of model checking proofs are used, e.g., for abstraction refinement [11], or approximative image computations through interpolants [13]. In general, proofs are also important for certification through proof checking [14].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davis, M., Putnam, H.: A computing procedure for quantification theory. In: JACM 7 (1960)

    Google Scholar 

  2. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Communications of the ACM 5(7) (1962)

    Google Scholar 

  3. Marques-Silva, J.P., Sakallah, K.A.: GRASP — a new search algorithm for satisfiability. In: Proc. ICCAD 1996 (1996)

    Google Scholar 

  4. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: Proc. DAC 2001 (2001)

    Google Scholar 

  5. Goldberg, E., Novikov, Y.: BerkMin: A fast and robust SAT-solver. In: Proc. DATE 2002 (2002)

    Google Scholar 

  6. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, Springer, Heidelberg (2004)

    Google Scholar 

  7. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) ETAPS 1999 and TACAS 1999. LNCS, vol. 1579, Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  8. Velev, M., Bryant, R.: Effective use of boolean satisfiability procedures in the formal verification of superscalar and VLIW microprocessors. J. Symb. Comput. 35(2) (2003)

    Google Scholar 

  9. Shlyakhter, I., Seater, R., Jackson, D., Sridharan, M., Taghdiri, M.: Debugging overconstrained declarative models using unsatisfiable cores. In: Proc. ASE 2003 (2003)

    Google Scholar 

  10. Sinz, C., Kaiser, A., Küchlin, W.: Formal methods for the validation of automotive product configuration data. AI EDAM 17(1) (2003)

    Google Scholar 

  11. McMillan, K., Amla, N.: Automatic abstraction without counterexamples. In: Garavel, H., Hatcliff, J. (eds.) ETAPS 2003 and TACAS 2003. LNCS, vol. 2619, Springer, Heidelberg (2003)

    Google Scholar 

  12. Xie, Y., Aiken, A.: Scalable error detection using boolean satisfiability. In: Proc. POPL 2005 (2005)

    Google Scholar 

  13. McMillan, K.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, Springer, Heidelberg (2003)

    Google Scholar 

  14. Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-based checker: Practical implementations and other applications. In: Proc. DATE 2003 (2003)

    Google Scholar 

  15. Biere, A.: Booleforce (2006), Available at http://fmv.jku.at/booleforce

  16. Jussila, T., Sinz, C., Biere, A.: Extended resolution proofs for symbolic SAT solving with quantification. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the potential of clause learning. J. Artif. Intell. Res. (JAIR) 22 (2004)

    Google Scholar 

  18. Dershowitz, N., Hanna, Z., Nadel, A.: A scalable algorithm for minimal unsatisfiable core extraction. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Robinson, J.A.: A machine-oriented logic based on the resolution principle. JACM 12 (1965)

    Google Scholar 

  20. Amjad, H.: Compressing propositional refuations. In: Proc. AVoCS 2006 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Roberto Moreno Díaz Franz Pichler Alexis Quesada Arencibia

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sinz, C. (2007). Compressing Propositional Proofs by Common Subproof Extraction. In: Moreno Díaz, R., Pichler, F., Quesada Arencibia, A. (eds) Computer Aided Systems Theory – EUROCAST 2007. EUROCAST 2007. Lecture Notes in Computer Science, vol 4739. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75867-9_69

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75867-9_69

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75866-2

  • Online ISBN: 978-3-540-75867-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics