Skip to main content

Knowledge-Assisted Analysis of Video for Content-Adaptive Coding and Transmission

  • Chapter
Advances in Semantic Media Adaptation and Personalization

Part of the book series: Studies in Computational Intelligence ((SCI,volume 93))

  • 433 Accesses

Summary

In this chapter a knowledge-assisted, domain-specific video analysis framework is introduced and employed for content-adaptive video coding and transmission. Domain knowledge employed under the proposed framework considers both low-level features and spatial behavior of video content for the purpose of analysis, as well as domain-, application- and user-specific importance factors associated with each domain concept that guide content-adaptive coding and transmission. The analysis approach relies on a genetic algorithm for supporting efficient object localization and identification with the use of domain knowledge. The application of the genetic algorithm is preceded by the automatic generation of a set of atom-regions by means of segmentation and the subsequent extraction of the atom-region lowlevel descriptors. The output of the analysis process is used for the content-adaptive optimization of the coding and transmission of the video. Several methodologies for the coding and transmission of video over unreliable wireline and wireless channels are presented, utilizing advanced channel coding techniques for unequally protecting the objects of the video stream on the basis of the importance factors defined in the domain knowledge. Experimental results on a test set comprising Formula One and Tennis domain videos demonstrate the effectiveness of the proposed framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. U. Gargi, R. Kasturi, and S.H. Strayer, “Performance Characterization of Video-Shot-Change Detection Methods,” IEEE Transaction on Circuits and Systems for Video Technology, vol. 10, no. 1, pp. 1–13, Feb 2000.

    Article  Google Scholar 

  2. V. Mezaris, I. Kompatsiaris, and M.G. Strintzis, “Still Image Segmentation Tools for Object-based Multimedia Applications,” International Journal of Pattern Recognition and Artificial Intelligence, vol. 18, no. 4, pp. 701–725, June 2004.

    Article  Google Scholar 

  3. V. Mezaris, I. Kompatsiaris, N.V. Boulgouris, and M.G. Strintzis, “Real-Time Compressed-Domain Spatiotemporal Segmentation and Ontologies for Video Indexing and Retrieval,” IEEE Transaction on Circuits and Systems for Video Technology, vol. 14, no. 5, pp. 606–621, May 2004.

    Article  Google Scholar 

  4. S.-Y. Chien, Y.-W. Huang, B.-Y. Hsieh, S.-Y. Ma, and L.-G. Chen, “Fast Video Segmentation Algorithm with Shadow Cancellation, Global Motion Compensation, and Adaptive Threshold Techniques,” IEEE Transactions on Multimedia, vol. 6, no. 5, pp. 732–748, Oct 2004.

    Article  Google Scholar 

  5. T. Gruber, “A Translation Approach to Portable Ontology Specifications,” Knowledge Acquisition, vol. 5, no. 2, pp. 199–220, 1993.

    Article  Google Scholar 

  6. J. Assfalg, M. Berlini, A. Del Bimbo, W. Nunziat, and P. Pala, “Soccer Highlights Detection and Recognition using HMMs,” in IEEE International Conference on Multimedia and Expo (ICME), pp. 825–828, 2005.

    Google Scholar 

  7. L. Zhang, F.Z. Lin, and B. Zhang, “Support Vector Machine Learning for Image Retrieval,” in IEEE International Conference on Image Processing (ICIP), pp. 721–724, 2001.

    Google Scholar 

  8. J. Hunter, J. Drennan, and S. Little, “Realizing the Hydrogen Economy through Semantic Web Technologies,” IEEE Intelligent Systems Journal - Special Issue on eScience, vol. 19, pp. 40–47, 2004.

    Google Scholar 

  9. A. Yoshitaka, S. Kishida, M. Hirakawa, and T. Ichikawa, “Knowledge-Assisted Content-Based Retrieval for Multimedia Databases,” IEEE Multimedia, vol. 1, no. 4, pp. 12–21, Winter 1994.

    Article  Google Scholar 

  10. G. Tsechpenakis, G. Akrivas, G. Andreou, G. Stamou, and S.D. Kollias, “Knowledge-Assisted Video Analysis and Object Detection,” in Proceedings of European Symposium on Intelligent Technologies, Hybrid Systems and their implementation on Smart Adaptive Systems (Eunite02), Algarve, Portugal, Sep. 2002.

    Google Scholar 

  11. M. Ramesh Naphade, I.V. Kozintsev, and T.S. Huang, “A Factor Graph Framework for Semantic Video Indexing,” IEEE Transaction on Circuits and Systems for Video Technology, vol. 12, no. 1, pp. 40–52, Jan. 2002.

    Article  Google Scholar 

  12. S. Dasiopoulou, C. Doulaverakis, V. Mezaris, I. Kompatsiaris, and M. G. Strintzis, “An Ontology-Based Framework for Semantic Image Analysis and Retrieval,” Semantic-based Visual Information Retrieval, Y.-J. Zhang (Ed.), 2007.

    Google Scholar 

  13. D.A. Randell, Z. Cui, and A.G. Cohn, “A Spatial Logic Based on Regions and Connection.,” in KR, pp. 165–176, 1992.

    Google Scholar 

  14. M.J. Egenhofer and R.D. Franzosa, “Point Set Topological Relations.,” International Journal of Geographical Information Systems, vol. 5, pp. 161–174, 1991.

    Article  Google Scholar 

  15. B.S. Manjunath, J.-R. Ohm, V.V. Vasudevan, and A. Yamada, “Color and Texture Descriptors,” IEEE Transaction on Circuits and Systems for Video Technology, special issue on MPEG-7, vol. 11, no. 6, pp. 703–715, June 2001.

    Article  Google Scholar 

  16. M. Bober, “MPEG-7 visual shape descriptors,” IEEE Transaction on Circuits and Systems for Video Technology, special issue on MPEG-7, vol. 11, no. 6, pp. 716–719, June 2001.

    Article  Google Scholar 

  17. J. McQueen, “Some Methods for Classification and Analyis of Multivariate Observations,” in 5th Berkely Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–296, 1967.

    Google Scholar 

  18. T. Yu and Y. Zhang, “Retrieval of Video Clips using Global Motion Information,” Electronics Letters, vol. 37, no. 14, pp. 893–895, July 2001.

    Article  Google Scholar 

  19. F. Precioso, M. Barlaud, T. Blu, and M. Unser, “Smoothing B-Spline Active Contour for Fast and Robust Image and Video Segmentation.,” in ICIP (1), pp. 137–140, 2003.

    Google Scholar 

  20. MPEG-7 XM software, “http://www.lis.ei.tum.de/research/bv/topics/mmdb/ e_mpeg7.html,”.

  21. M. Jacob, T. Blu, and M. Unser, “An Exact Method for Computing the Area Moments of Wavelet and Spline Curves.,” IEEE Transactions on Pattern Analalysis and Machine Intelligence, vol. 23, no. 6, pp. 633–642, 2001.

    Article  Google Scholar 

  22. M. Mitchell, An introduction to Genetic Algorithms, MIT, 1996.

    Google Scholar 

  23. D. Goldberg and K. Deb, A comparative analysis of selection schemes used in genetic algorithms, pp. 69–93, G. Rawlins, 1991.

    Google Scholar 

  24. R. Gallager, “Low-Density Parity-Check Codes.,” IRE Transactions on Information Theory, pp. 21–28, Jan 1962.

    Google Scholar 

  25. C. Berrou and A. Glavieux, “Near Optimum Error Correcting Coding And Decoding: Turbo Codes,” IEEE Transaction on Communications, vol. 44, no. 10, pp. 1261–1271, Oct. 1996.

    Article  Google Scholar 

  26. Y. Shoham and A. Gersho, “Efficient Bit Allocation for an Arbitrary Set of Quantizers,” IEEE Transaction on Acoustics, Speech, Signal Processing, vol. 36, pp. 1445–1453, Sep. 1988.

    Article  MATH  Google Scholar 

  27. N.V. Boulgouris, N. Thomos, and M.G. Strintzis, “Transmission of Images Over Noisy Channels Using Error-Resilient Wavelet Coding and Forward Error Correction,” IEEE Transaction on Circuits and Systems for Video Technology, vol. 13, no. 12, pp. 1170–1181, Dec. 2003.

    Article  Google Scholar 

  28. N. Thomos, N.V. Boulgouris, and M.G. Strintzis, “Wireless Image Transmission Using Turbo Codes and Optimal Unequal Error Protection,” IEEE Transaction on Image Processing, vol. 14, no. 11, pp. 1890–1901, Nov. 2005.

    Article  Google Scholar 

  29. N. Thomos, N.V. Boulgouris, and M.G. Strintzis, “Product Code Optimization for Determinate State LDPC Decoding in Robust Image Transmission,” IEEE Transaction on Image Processing, vol. 15, no. 8, pp. 2113–2119, Aug. 2006.

    Article  Google Scholar 

  30. G.D. Forney, “The Viterbi Algorithm,” Proceedings of IEEE, vol. 61, no. 3, pp. 268–278, Mar. 1973.

    Article  MathSciNet  Google Scholar 

  31. J.-C. Tuan, T.-S. Chang, and C.-W. Jen, “On the data reuse and memory bandwidth analysis for full-search block-matching VLSI architecture,” IEEE Transaction on Circuits and Systems for Video Technology, vol. 12, no. 1, pp. 61–72, Jan. 2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mezaris, V., Thomos, N., Boulgouris, N.V., Kompatsiaris, I. (2008). Knowledge-Assisted Analysis of Video for Content-Adaptive Coding and Transmission. In: Wallace, M., Angelides, M.C., Mylonas, P. (eds) Advances in Semantic Media Adaptation and Personalization. Studies in Computational Intelligence, vol 93. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76361_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76361_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76359-8

  • Online ISBN: 978-3-540-76361-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics