Abstract
In this paper, a multiview pedestrian detection method based on Vector Boosting algorithm is presented. The Extended Histograms of Oriented Gradients (EHOG) features are formed via dominant orientations in which gradient orientations are quantified into several angle scales that divide gradient orientation space into a number of dominant orientations. Blocks of combined rectangles with their dominant orientations constitute the feature pool. The Vector Boosting algorithm is used to learn a tree-structure detector for multiview pedestrian detection based on EHOG features. Further a detector pyramid framework over several pedestrian scales is proposed for better performance. Experimental results are reported to show its high performance.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gavrila, D.M.: Sensor-based Pedestrian Protection. IEEE Intelligent Systems, 77–81 (2001)
Zhao, T.: Model-based Segmentation and Tracking of Multiple Humans in Complex Situations. In: CVPR 2003 (2003)
Ogale, N.A.: A survey of techniques for human detection from video, University of Maryland, Technical report (2005)
Munder, S., Gavrila, D.M.: An Experimental Study on Pedestrian Classification. TPAMI 28(11) (2006)
Wu, B., Nevatia, R.: Detection of Multiple, Partially Occluded Humans in a Single Image by Bayesian Combination of Edgelet Part Detectors. In: Sebe, N., Lew, M.S., Huang, T.S. (eds.) Computer Vision in Human-Computer Interaction. LNCS, vol. 3766, Springer, Heidelberg (2005)
Wu, B., Nevatia, R.: Tracking of Multiple, Partially Occluded Humans based on Static Body Part Detection. In: CVPR 2006 (2006)
Dalal, N., Triggs, B.: Histograms of Oriented Gradients for Human detection. In: CVPR 2005 (2005)
Dalal, N., Triggs, B., Schmid, C.: Human Detection Using Oriented Histograms of Flow and Appearance. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, Springer, Heidelberg (2006)
Zhu, Q., Avidan, S., et al.: Fast Human Detection Using a Cascade of Histograms of Oriented Gradients. In: CVPR 2006 (2006)
Schapire, R.E., Singer, Y.: Improved Boosting Algorithms Using Confidence-rated Predictions. Machine Learning 37, 297–336 (1999)
Viola, P., Jones, M.: Rapid Object Detection using a Boosted Cascade of Simple Features. In: CVPR 2001 (2001)
Viola, P., Jones, M., Snow, D.: Detecting Pedestrians Using Pattern of Motion and Appearance. In: ICCV 2003 (2003)
Zhao, L., Thorpe, C.E.: Stereo- and Neural Network-Based Pedestrian Detection. IEEE Trans. on Intelligent Transportation Systems 1(3) (2000)
Gavrila, D.M.: The Visual Analysis of Human Movement: A Survey. Computer Vision and Image Understanding 73(1), 82–98 (1999)
Wu, B., Ai, H., et al.: Fast rotation invariant multi-view face detection based on Real Adaboost. In: FG 2004 (2004)
Li, S.Z., Zhu, L., et al.: Statistical Learning of Multi-View Face Detection. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, Springer, Heidelberg (2002)
Jones, M., Viola, P.: Fast Multi-view Face Detection. MERL-TR2003-96 (July 2003)
Huang, C., Ai, H.Z., et al.: Vector Boosting for Rotation Invariant Multi-View Face Detection. In: Sebe, N., Lew, M.S., Huang, T.S. (eds.) Computer Vision in Human-Computer Interaction. LNCS, vol. 3766, Springer, Heidelberg (2005)
Huang, C., Ai, H.Z., et al.: High-Performance Rotation Invariant Multiview Face Detection. TPAMI 29(4), 671–686 (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hou, C., Ai, H., Lao, S. (2007). Multiview Pedestrian Detection Based on Vector Boosting. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds) Computer Vision – ACCV 2007. ACCV 2007. Lecture Notes in Computer Science, vol 4843. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76386-4_19
Download citation
DOI: https://doi.org/10.1007/978-3-540-76386-4_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-76385-7
Online ISBN: 978-3-540-76386-4
eBook Packages: Computer ScienceComputer Science (R0)