Skip to main content

Optical Flow–Driven Motion Model with Automatic Variance Adjustment for Adaptive Tracking

  • Conference paper
Computer Vision – ACCV 2007 (ACCV 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4843))

Included in the following conference series:

  • 3256 Accesses

Abstract

We propose a statistical motion model for sequential Bayesian tracking, called the optical flow–driven motion model, and show an adaptive particle filter algorithm with the motion model. It predicts the current state with the help of optical flows, i.e., it explores the state space with information based on the current and previous images of an image sequence. In addition, we introduce an automatic method for adjusting the variance of the motion model, which parameter is manually determined in most particle filters. In experiments with synthetic and real image sequences, we compare the proposed motion model with a random walk model, which is a widely used model for tracking, and show the proposed model outperform the random walk model in terms of accuracy even though their execution times are almost the same.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Doucet, A., de Freitas, N., Gordon, N.J.: Sequential Monte Carlo Methods in Practice. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  2. Gordon, N.J., Salmond, D.J., Smith, A.F.M.: Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc.–F 140(2), 107–113 (1993)

    Google Scholar 

  3. Kitagawa, G.: Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. J. Comput. Graph. Stat. 5(1), 1–25 (1996)

    Article  MathSciNet  Google Scholar 

  4. Isard, M., Blake, A.: Condensation – Conditional density propagation for visual tracking. Int. J. Computer Vision 29(1), 5–28 (1998)

    Article  Google Scholar 

  5. Haralick, R.M.: Propagating Covariance in Computer Vision. Int. J. Pattern Recognition and Artificial Intelligence 10(5), 561–572 (1996)

    Article  Google Scholar 

  6. Nummiaro, K., Koller-Meier, E., Gool, L.V.: An adaptive color-based particle filter. Image and Vision Computing 21, 99–110 (2003)

    Article  Google Scholar 

  7. Pitt, M.K., Shephard, N.: Filtering Via Simulation: Auxiliary Particle Filters. J. the American Statistical Association 94, 590–599 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Liu, J.S., Chen, R.: Sequential Monte Carlo methods for dynamical systems. J. the American Statistical Association 93(443), 1032–1044 (1998)

    Article  MATH  Google Scholar 

  9. Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing 10, 197–208 (2000)

    Article  Google Scholar 

  10. Kitagawa, G.: Self–organizing state space model. J. the American Statistical Association 93(443), 1203–1215 (1998)

    Article  Google Scholar 

  11. Ichimura, N.: Stochstic Filtering for Motion Trajectory in Image Sequences Using a Monte Carlo Filter with Estimation of Hyper-Parameters. Proc. Int. Conf. on Pattern Recognition IV, 68–73 (2002)

    Google Scholar 

  12. Isard, M., Blake, A.: ICondensation: Unifying low-level and high-level tracking in a stochastic framework. Proc. European Conf. Computer Vision 1, 893–908 (1998)

    Google Scholar 

  13. Fischer, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Comm. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  14. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proc. 4th Alvey Vision Conf., pp.147–151 (August 1988)

    Google Scholar 

  15. Shi, J., Tomasi, C.: Good Features to Track, Proc. Computer Vision Pattern Recognition, pp.593–600 (1994)

    Google Scholar 

  16. Bouguet, J.Y.: Pyramidal Implementation of the Lucas Kanade Feature Tracker, Intel Corporation, Microprocessor Research Labs (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Yasushi Yagi Sing Bing Kang In So Kweon Hongbin Zha

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kawamoto, K. (2007). Optical Flow–Driven Motion Model with Automatic Variance Adjustment for Adaptive Tracking. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds) Computer Vision – ACCV 2007. ACCV 2007. Lecture Notes in Computer Science, vol 4843. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76386-4_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76386-4_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76385-7

  • Online ISBN: 978-3-540-76386-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics