Abstract
This paper proposes a novel eye detection method using the MCT-based pattern correlation. The proposed method detects the face by the MCT-based AdaBoost face detector over the input image and then detects two eyes by the MCT-based AdaBoost eye detector over the eye regions. Sometimes, we have some incorrectly detected eyes due to the limited detection capability of the eye detector. To reduce the falsely detected eyes, we propose a novel eye verification method that employs the MCT-based pattern correlation map. We verify whether the detected eye patch is eye or non-eye depending on the existence of a noticeable peak. When one eye is correctly detected and the other eye is falsely detected, we can correct the falsely detected eye using the peak position of the correlation map of the correctly detected eye. Experimental results show that the eye detection rate of the proposed method is 98.7% and 98.8% on the Bern images and AR-564 images.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tan, X., Chen, S., Zhou, Z., Zhang, F.: Face recognition from a single image per person: A survey. Pattern Recognition 39, 1725–1745 (2006)
Brunelli, R., Poggio, T.: Face recognition: features versus templates. IEEE Transaction on Pattern Analysis and Machine Intelligence 15, 1042–1052 (1993)
Lawrence, S., Giles, C., Tsoi, A., Back, A.: Face recognition: a convolutional neural-network approach. IEEE Transaction on Neural Networks 8, 98–113 (1997)
Martinez, A.: Recognizing imprecisely localized, partially occluded, and expression variant faces from a single sample per class. IEEE Transaction on Pattern Analysis and Machine Intelligence 24, 748–768 (2002)
Beymer, D.: Face recognition under varying pose. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 756–761. IEEE Computer Society Press, Los Alamitos (1994)
Pentland, A., Moghaddam, B., Starner, T.: View-based and modular eigenspaces for face recognition. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 84–91. IEEE Computer Society Press, Los Alamitos (1994)
Kawaguchi, T., Rizon, M.: Iris detection using intensity and edge information. Pattern Recognition 36, 549–562 (2003)
Song, J., Chi, Z., Li, J.: A robust eye detection method using combined binary edge and intensity information. Pattern Recognition 39, 1110–1125 (2006)
Freund, Y., Schapire, R.: A short introduction to boosting. Journal of Japanese Society for Artificial Intelligence 14, 771–780 (1999)
Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 511–518. IEEE Computer Society Press, Los Alamitos (2001)
Froba, B., Ernst, A.: Face detection with the modified census transform. In: IEEE International Conference on Automatic Face and Gesture Recognition, pp. 91–96 (2004)
Song, Y.J., Kim, Y.G., Chang, U.D., Kwon, H.B.: Face recognition robust to left/right shadows; facial symmetry. Pattern Recognition 39, 1542–1545 (2006)
Je, H., Kim, S., Jun, B., Kim, D., Kim, H., Sung, J., Bang, S.: Asian Face Image Database PF01, Technical Report. Intelligent Multimedia Lab, Dept. of CSE, POSTECH (2001)
Luettin, J., Maître, G.: Evaluation Protocol for the Extended M2VTS database (XM2VTSDB), IDIAP Communication 98-05. In: IDIAP, Martigny, Switzerland, pp. 98–95 (1998)
Achermann, B.: The face database of University of Bern. Institute of Computer Science and Applied Mathematics, University of Bern (1995)
Martinez, A., Benavente, R.: The AR Face Database, CVC Technical Report #24 (1998)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Choi, I., Kim, D. (2007). Eye Correction Using Correlation Information. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds) Computer Vision – ACCV 2007. ACCV 2007. Lecture Notes in Computer Science, vol 4843. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76386-4_66
Download citation
DOI: https://doi.org/10.1007/978-3-540-76386-4_66
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-76385-7
Online ISBN: 978-3-540-76386-4
eBook Packages: Computer ScienceComputer Science (R0)