Abstract
We propose a robust method to extract silhouettes of foreground objects from color video sequences. To cope with various changes in the background, the background is modeled as generalized Gaussian Family of distributions and updated by the selective running average and static pixel observation. All pixels in the input video image are classified into four initial regions using background subtraction with multiple thresholds, after which shadow regions are eliminated using color components. The final foreground silhouette is extracted by refining the initial region using morphological processes. We have verified that the proposed algorithm works very well in various background and foreground situations through experiments.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gelasca, E.D., Ebrahimi, T., Karaman, M., Sikora, T.: A Framework for Evaluating Video Object Segmentation Algorithms. In: Proc. CVPR Workshop, pp. 198–198 (2006)
Piccardi, M.: Background Subtraction techniques: a review. In: Proc. IEEE. SMC, vol. 4, pp. 3099–3104 (2004)
Kumar, P., Sengupta, K., Ranganath, S.: Real time detection and recognition of human profiles using inexpensive desktop cameras. In: Proc. ICPR, pp. 1096–1099 (2000)
Jabri, S., Duric, Z., Rosenfeld, A., Wechsler, H.: Detection and location of people in video images using adaptive fusion of color and edge information. In: Proc. ICPR, pp. 627–630 (2000)
Horprasert, T., Harwood, D., Davis, L.S.: A robust background subtraction and shadow detection. In: Proc. ACCV (2000)
McKenna, S.J., Jabri, S., Duric, Z., Rosenfeld, A., Wechsler, H.: Tracking Groups of People. Computer Vision and Image Understanding 80(1), 42–56 (2000)
Wren, C., Azarbayejani, A., Darrell, T., Pentland, A.P.: Pfinder: Real-Time Tracking of the Human Body. IEEE Trans. PAMI 19(7), 780–785 (1997)
Stauffer, C., Grimson, W.E.L.: Adaptive background mixture models for real-time tracking. In: Proc. CVPR, pp. 246–252 (1999)
Lee, D.S., Hull, J.J., Erol, B.: A Bayesian framework for Gaussian mixture background modeling. In: Proc. ICIP, vol. 3, pp. 973–976 (2003)
Javed, O., Shafique, K., Shah, M.: A hierarchical approach to robust background subtraction using color and gradient information. In: Proc. IEEE Motion and Video Computing, pp. 22–27. IEEE Computer Society Press, Los Alamitos (2002)
Porikli, F., Tuzel, O.: Human body tracking by adaptive background models and mean-shift analysis. In: Proc. PETS-ICVS (2003)
Cristani, M., Bicego, M., Murino, V.: Integrated region- and pixel based approach to background modeling. In: Proc. IEEE MVC, pp. 3–8. IEEE Computer Society Press, Los Alamitos (2002)
Elgammal, A., Harwood, D., Davis, L.S.: Non-parametric model for background subtraction. In: Proc. ECCV, vol. 2, pp. 751–767 (2000)
Tuzel, O., Porikli, F., Meer, P.: A Bayesian Approach to Background Modeling. In: Proc. IEEE MVIV, vol. 3, pp. 58–63 (2005)
Han, B., Comaniciu, D., Davis, L.: Sequential kernel density approximation through mode propagation: applications to background modeling. In: Proc. ACCV (2004)
Mittal, A., Paragios, N.: Motion-based background subtraction using adaptive kernel density estimation. In: Proc. CVPR, pp. 302–309 (2004)
Kim, K., Chalidabhongse, T.H., Harwood, D., Davis, L.S.: Real-time foreground-background segmentation using codebook model. Real-Time Imaging 11, 172–185 (2005)
Wang, D., Feng, T., Shum, H., Ma, S.: Novel probability model for background maintenance and subtraction. In: Proc. ICVI (2002)
Stenger, B., Ramesh, V., Paragios, N., Coetzee, F., Buhmann, J.: Topology free hidden Markov models: Application to background modeling. In: Proc. ICCV, pp. 294–301 (2001)
Zhong, J., Sclaroff, S.: Segmenting foreground objects from a dynamic textured background via a robust Kalman filter. In: Proc. ICCV, pp. 44–50 (2003)
Monnet, A., Mittal, A., Paragios, N., Ramesh, V.: Background modeling and subtraction of dynamic scenes. In: Proc. ICCV, pp. 1305–1312 (2003)
Lee, J.Y., Nandi, A.K.: Maximum Likelihood Parameter Estimation of the Asymmetric Generalized Gaussian Family of Distribution. In: Proc. SPW-HOS (1999)
Kotz, S., Kozubowski, T.J., Podgorski, K.: Maximum likelihood estimation of asymmetric Laplace parameters. Ann. Inst. Statist. Math. 54, 816–826 (2002)
Shapiro, L.G., Stockman, G.C.: Computer Vision. Prentice Hall, New Jersey (2001)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kim, H., Sakamoto, R., Kitahara, I., Toriyama, T., Kogure, K. (2007). Robust Foreground Extraction Technique Using Gaussian Family Model and Multiple Thresholds. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds) Computer Vision – ACCV 2007. ACCV 2007. Lecture Notes in Computer Science, vol 4843. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76386-4_72
Download citation
DOI: https://doi.org/10.1007/978-3-540-76386-4_72
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-76385-7
Online ISBN: 978-3-540-76386-4
eBook Packages: Computer ScienceComputer Science (R0)