Abstract
In this paper, we propose a new face recognition approach based on local binary patterns (LBP). The proposed approach has the following novel contributions. (i) As compared with the conventional LBP, anisotropic structures of the facial images can be captured effectively by the proposed approach using elongated neighborhood distribution, which is called the elongated LBP (ELBP). (ii) A new feature, called Average Maximum Distance Gradient Magnitude (AMDGM), is proposed. AMDGM embeds the gray level difference information between the reference pixel and neighboring pixels in each ELBP pattern. (iii) It is found that the ELBP and AMDGM features are well complement with each other. The proposed method is evaluated by performing facial expression recognition experiments on two databases: ORL and FERET. The proposed method is compared with two widely used face recognition approaches. Furthermore, to test the robustness of the proposed method under the condition that the resolution level of the input images is low, we also conduct additional face recognition experiments on the two databases by reducing the resolution of the input facial images. The experimental results show that the proposed method gives the highest recognition accuracy in both normal environment and low image resolution conditions.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahonen, T., Hadid, A., Pietikainen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)
Vapnik, V.N.: Statistical Learning Theory. John Wiley and Sons, New York (1998)
Wiskott, L., Fellous, J.-M., Kuiger, N., von der Malsburg, C.: Face recognition by elastic bunch graph matching. IEEE PAMI 19(7), 775–779 (1997)
Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3, 71–86 (1991)
Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE PAMI 19(7), 711–720 (1997)
Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns. IEEE PAMI 24(7), 971–987 (2002)
Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.: The feret database and evaluation procedure for face recognition algorithms. IVC 16(5), 295–306 (1998)
Blanz, V., Vetter, T.: Face recognition based on fitting a 3D morphable model. IEEE PAMI 25(9), 1063–1074 (2003)
Shashua, A., Riklin-Raviv, T.: The quotient image: Class based re-rendering and recognition with varying illuminations. IEEE PAMI 23(2), 129–139 (2001)
Tian, T.-I., Kanade, T., Cohn, J.F.: Recognizing action units for facial expression analysis. IEEE PAMI 23(2), 97–115 (2001)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liao, S., Chung, A.C.S. (2007). Face Recognition by Using Elongated Local Binary Patterns with Average Maximum Distance Gradient Magnitude. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds) Computer Vision – ACCV 2007. ACCV 2007. Lecture Notes in Computer Science, vol 4844. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76390-1_66
Download citation
DOI: https://doi.org/10.1007/978-3-540-76390-1_66
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-76389-5
Online ISBN: 978-3-540-76390-1
eBook Packages: Computer ScienceComputer Science (R0)