Skip to main content

Interpolation Between Eigenspaces Using Rotation in Multiple Dimensions

  • Conference paper
Computer Vision – ACCV 2007 (ACCV 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4844))

Included in the following conference series:

Abstract

We propose a method for interpolation between eigenspaces. Techniques that represent observed patterns as multivariate normal distribution have actively been developed to make it robust over observation noises. In the recognition of images that vary based on continuous parameters such as camera angles, one cause that degrades performance is training images that are observed discretely while the parameters are varied continuously. The proposed method interpolates between eigenspaces by analogy from rotation of a hyper-ellipsoid in high dimensional space. Experiments using face images captured in various illumination conditions demonstrate the validity and effectiveness of the proposed interpolation method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Watanabe, S., Pakvasa, N.: Subspace Method of Pattern Recognition. In: Proc. 1st Int. J. Conf. on Pattern Recognition, pp. 25–32 (1971)

    Google Scholar 

  2. Turk, M., Pentland, A.: Face Recognition Using Eigenfaces. In: Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pp. 568–591. IEEE Computer Society Press, Los Alamitos (1991)

    Google Scholar 

  3. Moghaddam, B.: Principal Manifolds and Bayesian Subspaces for Visual Recognition. In: Proc. Int. Conf. on Computer Vision, pp. 1131–1136 (1999)

    Google Scholar 

  4. Murase, H., Nayar, S.K.: Illumination Planning for Object Recognition Using Parametric Eigenspaces. IEEE Trans. Pattern Analysis and Machine Intelligence 16(12), 1218–1227 (1994)

    Article  Google Scholar 

  5. Takahashi, L.T., Ide, I., Murase, H.: Appearance Manifold with Embedded Covariance Matrix for Robust 3-D Object Recognition. In: Proc. 10th IAPR Conf. on Machine Vision Applications, pp. 504–507 (2007)

    Google Scholar 

  6. Georghiades, A.S., Belhumeur, P.N., Kriegman, C.D.J.: From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose. IEEE Trans. Pattern Analysis and Machine Intelligence 23(6), 643–660 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Yasushi Yagi Sing Bing Kang In So Kweon Hongbin Zha

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Takahashi, T., Lina, Ide, I., Mekada, Y., Murase, H. (2007). Interpolation Between Eigenspaces Using Rotation in Multiple Dimensions. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds) Computer Vision – ACCV 2007. ACCV 2007. Lecture Notes in Computer Science, vol 4844. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76390-1_76

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76390-1_76

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76389-5

  • Online ISBN: 978-3-540-76390-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics