Abstract
When accessing contents in ever-increasing multimedia chunks, indexing and analysis of video data are key steps. Among different types of videos, sports video is an important type of video and it is under research focus now. Due to the increasing demands from audience, highlights extraction become meaningful. This paper proposed a mean shift clustering based semi-automatic sports video highlight annotation method. Specifically, given small pieces of annotated highlights, by adopting Mean Shift clustering and earth mover’s distance (EMD), mid-level features of highlight shots are extracted and utilized to annotate other highlights automatically. There are 3 steps in the proposed method: First, extract signature of different features – Camera Motion Signature (CMS) for motion and Pivot Frame Signature (PFS) for color. Second, Camera motion’s co-occurrence value is defined as Camera Motion Devotion Value (CMDV) and calculated as EMD distance between signatures. Decisive motion feature for highlights’ occurrences is thus semi-automatically detected. Finally highlights are annotated based on these motion parameters and refined by color-based results. Another innovation of this paper is to combine semantic information with low-level feature aiding highlight annotation. Based on Highlight shot feature (HSF), we performed hierarchical highlight annotation and got promising results. Our method is tested on four video sequences comprising of different types of sports games including diving, swimming, and basketball, over 50,000 frames and experimental results demonstrate the effectiveness of our method.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tan, Y.-P., Saur, D.D., Kulkami, S.R., Ramadge, P.J.: Rapid Estimation of Camera Motion from Compressed Video with Application to Video Annotation. Circuits and Systems for Video Technology, IEEE Transactions 10(1), 133–146 (2000)
Aigrain, P., Joly, P.: The Automatic and Real-time Analysis of Film Editing and Transition Effects and Its Applications. Computer and Graphics 1, 93–103 (1994)
Zhang, H.J., Low, C.Y., Smoliar, S.W.: Video Parsing and Browsing Using Compressed Data. Multimedia Tools and Applications 1(1), 89–111 (1995)
Meng, J., Yujue, J., Chang, S.-F.: Scene Change Detection in a MPEG Compressed Video Sequence. In: ISLT/SPIE Symposium Proceedings, vol. SPIE-2419, pp. 14–25 (1995)
Yeo, B.-L., Liu, B.: Rapid Scene Analysis on Compressed Videos. IEEE Transactions on Circuits and Systems for Video Technology 5, 533–544 (1995)
Zhong, D., Zhang, H.-J., Chang, S.-F.: Clustering Methods for Video Browsing and Annotation. Storage and Retrieval for Still Image and Video Database IV SPIE-2670, 239–246 (1996)
Yeung, M.M., Yeo, B.-L.: Time –Constrained Clustering for Segmentation of Video into Story Units. In: Int. Conf. on Pattern Recog., vol. C, pp. 375–380 (August 1996)
Aigrain, P., Joly, P., Longueville, V.: Medium Knowledge-Based Macro-Segmentation of Video into Sequences, Intell, Multimedia Inf, Retrieval (1996)
Hisashi, A., Shimotsuji, S., Hori, O.: A Shot Classification Method of Selecting Effective Key-Frames for Video Browsing, ACM Multimedia, pp. 1–10 (1996)
Minerva, M.Y., Yeo, B.-L.: Video Content Characterization and Compaction for Digital Library Applications. Storage and Retrieval for Still Image and Video Database IV SPIE-3022, 45–58 (1997)
Comaniciu, D., Meer, P.: Mean Shift, a Robust Approach Toward Feature Space Analysis. Pattern Analysis and Machine Intelligence, IEEE Transaction 24, 603–619 (2002)
Rubner, Y., Tomasi, C., Guibas, L.J.: The Earth Mover’s Distance as a Metric for Image Retrieval. International Journal of Computer Vision 40, 1405–1573 (2000)
Yuh-Lin, C., Wenjung, Z., Ibrahim, K., Rafael, A.: Integrated Image and Speech Analysis for Content-based Video Indexing. In: Proceedings of IEEE Multimedia, vol. 2996, pp. 306–313
Chang, S.F., Messerschmitt, D.G.: Manipulation and Composition of MC-DCT Compressed Video, IEEE Journal of Selected Areas in Communications, Special Issue on Intelligent Signal Processing, 1–11 (January 1995)
ISO/IEC 11172-1: Information Technology – Coding of moving pictures and associated audio for digital storage media at up to 1.5 MBit/s – Part 1: Systems (1993)
Vasudev, B., Konstantinos, K.: Image and Video Compression Standards – Algorithms and Architectures. Kluwer Academic Publishers, Dordrecht (1995)
Lu, Y., Meng, W., Shu, L., Yu, C., Liu, K.-L.: Evaluation of Result Merging Strategies for Metasearch Engines. In: Ngu, A.H.H., Kitsuregawa, M., Neuhold, E.J., Chung, J.-Y., Sheng, Q.Z. (eds.) WISE 2005. LNCS, vol. 3806, pp. 53–66. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Shen, Y., Lu, H., Xue, X. (2007). A Semi-automatic Feature Selecting Method for Sports Video Highlight Annotation. In: Qiu, G., Leung, C., Xue, X., Laurini, R. (eds) Advances in Visual Information Systems. VISUAL 2007. Lecture Notes in Computer Science, vol 4781. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76414-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-540-76414-4_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-76413-7
Online ISBN: 978-3-540-76414-4
eBook Packages: Computer ScienceComputer Science (R0)