Skip to main content

Texture Representation and Retrieval Using the Causal Autoregressive Model

  • Conference paper
Advances in Visual Information Systems (VISUAL 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4781))

Included in the following conference series:

Abstract

In this paper we propose to revisit the well-known autoregressive model (AR) as a texture representation model. We consider the AR model with causal neighborhoods. First, we will define the AR model and discuss briefly the parameters estimation process. Then, we will present the synthesis algorithm and we will show some experimental results. The causal autoregressive model is applied in content-based image retrieval. Benchmarking conducted on the well-known Brodatz database shows interesting results. Both retrieval effectiveness (relevance) and retrieval efficiency are discussed and compared to the well-known multiresolution simultaneous autoregressive model (MRSAR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbadeni, N.: Perceptual interpretation of the estimated parameters of the autoregressive model. Proceedings of the IEEE ICIP(3), 1164–1167 (2005)

    Google Scholar 

  2. Abbadeni, N.: A new similarity matching measure: application to texture-based image retrieval. In: Proceedings of the 3rd International Workshop on Texture Analysis and Synthesis, pp. 1–6 (2003)

    Google Scholar 

  3. Abbadeni N.: Recherche d’images basée sur leur contenu. Représentation de la texture par le modèle autorégressif. Research report (in French) No. 216, University of Sherbrooke (1998)

    Google Scholar 

  4. Del Bimbo, A.: Visual information retrieval. Morgan Kaufmann Publishers, San Francisco (1999)

    Google Scholar 

  5. Brodatz, P.: Textures: A Photographic Album for Artists and Designers, Dover, New York (1966)

    Google Scholar 

  6. Dunlop, M.D.: Time, relevance and interaction modeling for information retrieval. In: Proceedings of the International ACM SIGIR Conference, pp. 206–213. ACM Press, New York (1997)

    Google Scholar 

  7. Frankot, R.T., Chellappa, R.: Lognormal random-field models and their applications to radar image synthesis. IEEE Transactions on Geoscience and Remote Sensing 25(2) (1987)

    Google Scholar 

  8. Gower, J.C.: A general coefficient of similarity and some of its properties. Biometrics Journal 27, 857–874 (1971)

    Article  Google Scholar 

  9. Kashyap, R.L., Chellappa, R.: Estimation and choice of neighbors in spatial interaction models of images. IEEE Transactions on Information Theory 29(1), 60–72 (1983)

    Article  MATH  Google Scholar 

  10. Liu, F., Picard, R.W.: Periodicity, directionality and randomness: Wold features for image modeling and retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(7), 722–733 (1996)

    Article  Google Scholar 

  11. Manjunath, B.S., Ma, W.Y.: Texture features for browsing and retrieval of image data. IEEE Transactions on Pattern Analysis and Machine Intelligence 18(8), 837–842 (1996)

    Article  Google Scholar 

  12. Mao, J., Jain, A.K.: Texture Classification and Segmentation Using Multiresolution Simultaneous Autoregressive Models. Pattern Recognition 25(2), 173–188 (1992)

    Article  Google Scholar 

  13. Press, W.H., Teukolsky, S.A., Vitterling, W.T., Flannery, B.P.: Numerical recipes in C. Cambridge University Press, Cambridge (1992)

    MATH  Google Scholar 

  14. Randen T., Husoy J.H.: Least squares image texture analysis and synthesis. Working papers from Hogskolen i Stavanger University, Norway (1994)

    Google Scholar 

  15. Solberg A.H.S., Jain A.K.: Texture analysis of SAR images: a comparative study. Research Report, Norwegian Computing Center and Michigan State University (1997)

    Google Scholar 

  16. Sondge M.: Synthèse de Textures. Ph.D Thesis, Université Pierre et Marie Curie (Paris VI), Paris (1983)

    Google Scholar 

  17. Tuceryan, M., Jain, A.K.: Texture analysis. In: Chen, C.H, Pau, L.F, Wang, P.S.P (eds.) Handbook of Pattern Recognition and Computer Vision, World Scientific (1993)

    Google Scholar 

  18. Weber, R., Schek, H.-J., Blott, S.: A Quantitative Analysis and Performance Study for Similarity Search Methods. In: High Dimensional Spaces. Proceedings of the 24th Very Large Database Conference, pp. 194–205 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Guoping Qiu Clement Leung Xiangyang Xue Robert Laurini

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abbadeni, N. (2007). Texture Representation and Retrieval Using the Causal Autoregressive Model. In: Qiu, G., Leung, C., Xue, X., Laurini, R. (eds) Advances in Visual Information Systems. VISUAL 2007. Lecture Notes in Computer Science, vol 4781. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76414-4_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76414-4_54

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76413-7

  • Online ISBN: 978-3-540-76414-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics