Abstract
In this paper, we present a novel model of an artificial immune system (AIS), based on the process that suffers the T-Cell. The proposed model is used for solving constrained (numerical) optimization problems. The model operates on three populations: Virgins, Effectors and Memory. Each of them has a different role. Also, the model dynamically adapts the tolerance factor in order to improve the exploration capabilities of the algorithm. We also develop a new mutation operator which incorporates knowledge of the problem. We validate our proposed approach with a set of test functions taken from the specialized literature and we compare our results with respect to Stochastic Ranking (which is an approach representative of the state-of-the-art in the area) and with respect to an AIS previously proposed.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Yoo, J., Hajela, P.: Immune network modelling in design optimization. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 167–183. McGraw-Hill, London (1999)
Smith, A.E., Coit, D.W.: Constraint Handling Techniques—Penalty Functions. In: Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.) Handbook of Evolutionary Computation, Oxford University Press and Institute of Physics Publishing (1997)
Garrett, S.M.: How do we evaluate artificial immune systems? Evolutionary Computation 13, 145–177 (2005)
Forrest, S., Perelson, A., Allen, L., Cherukuri, R.: Self-nonself discrimination in a computer. In: IEEE Symposium on Research in Security and Privacy, pp. 202–212. IEEE Computer Society Press, Los Alamitos (1994)
Jerne, N.K.: The immune system. Scientific American 229, 52–60 (1973)
Hunt, J.E., Cooke, D.E.: An adaptative, distributed learning system based on the immune system. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pp. 2494–2499. IEEE Computer Society Press, Los Alamitos (1995)
Ishiguru, A., Uchikawa, Y.W.: Fault diagnosis of plant system using immune network. In: MFI 1994. Proceedings of the 1994 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Las Vegas, Nevada, USA (1994)
de Castro, L.N., Von Zuben, F.: Learning and optimization using the clonal selection principle. IEEE Transactions on Evolutionary Computation 6, 239–251 (2002)
Kelsey, J., Timmis, J.: Immune inspired somatic contiguous hypermutation for function optimisation. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.M., Beyer, H.G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, pp. 207–218. Springer, Heidelberg (2003)
Coello Coello, C.A., Cruz-Cortés, N.: Hybridizing a genetic algorithm with an artificial immune system for global optimization. Engineering Optimization 36, 607–634 (2004)
Luh, G.C., Chueh, H.: Multi-objective optimal design of truss structure with immune algorithm. Computers and Structures 82, 829–844 (2004)
Cruz Cortés, N., Trejo-Pérez, D., Coello Coello, C.A.: Handling constrained in global optimization using artificial immune system. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 234–247. Springer, Heidelberg (2005)
Liang, J., Runarsson, T., Mezura-Montes, E., Clerc, M., Suganthan, P., Coello, C.C., Deb, K.: Problem definitions and evaluation criteria for the cec 2006 special session on constrained real-parameter optimization. Technical report, Nanyang Technological University, Singapore (2006)
Runarsson, T.P., Yao, X.: Stochastic Ranking for Constrained Evolutionary Optimization. IEEE Transactions on Evolutionary Computation 4, 284–294 (2000)
Cagnina, L., Esquivel, S., Coello, C.C.: A bi-population PSO with a shake-mechanism for solving numerical optimization. In: Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, IEEE Press, Los Alamitos (2007)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Aragón, V.S., Esquivel, S.C., Coello Coello, C.A. (2007). A Novel Model of Artificial Immune System for Solving Constrained Optimization Problems with Dynamic Tolerance Factor. In: Gelbukh, A., Kuri Morales, Á.F. (eds) MICAI 2007: Advances in Artificial Intelligence. MICAI 2007. Lecture Notes in Computer Science(), vol 4827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76631-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-540-76631-5_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-76630-8
Online ISBN: 978-3-540-76631-5
eBook Packages: Computer ScienceComputer Science (R0)