Skip to main content

A Novel Model of Artificial Immune System for Solving Constrained Optimization Problems with Dynamic Tolerance Factor

  • Conference paper
MICAI 2007: Advances in Artificial Intelligence (MICAI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4827))

Included in the following conference series:

  • 1036 Accesses

Abstract

In this paper, we present a novel model of an artificial immune system (AIS), based on the process that suffers the T-Cell. The proposed model is used for solving constrained (numerical) optimization problems. The model operates on three populations: Virgins, Effectors and Memory. Each of them has a different role. Also, the model dynamically adapts the tolerance factor in order to improve the exploration capabilities of the algorithm. We also develop a new mutation operator which incorporates knowledge of the problem. We validate our proposed approach with a set of test functions taken from the specialized literature and we compare our results with respect to Stochastic Ranking (which is an approach representative of the state-of-the-art in the area) and with respect to an AIS previously proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Yoo, J., Hajela, P.: Immune network modelling in design optimization. In: Corne, D., Dorigo, M., Glover, F. (eds.) New Ideas in Optimization, pp. 167–183. McGraw-Hill, London (1999)

    Google Scholar 

  2. Smith, A.E., Coit, D.W.: Constraint Handling Techniques—Penalty Functions. In: Bäck, T., Fogel, D.B., Michalewicz, Z. (eds.) Handbook of Evolutionary Computation, Oxford University Press and Institute of Physics Publishing (1997)

    Google Scholar 

  3. Garrett, S.M.: How do we evaluate artificial immune systems? Evolutionary Computation 13, 145–177 (2005)

    Article  MathSciNet  Google Scholar 

  4. Forrest, S., Perelson, A., Allen, L., Cherukuri, R.: Self-nonself discrimination in a computer. In: IEEE Symposium on Research in Security and Privacy, pp. 202–212. IEEE Computer Society Press, Los Alamitos (1994)

    Google Scholar 

  5. Jerne, N.K.: The immune system. Scientific American 229, 52–60 (1973)

    Article  Google Scholar 

  6. Hunt, J.E., Cooke, D.E.: An adaptative, distributed learning system based on the immune system. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pp. 2494–2499. IEEE Computer Society Press, Los Alamitos (1995)

    Google Scholar 

  7. Ishiguru, A., Uchikawa, Y.W.: Fault diagnosis of plant system using immune network. In: MFI 1994. Proceedings of the 1994 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Las Vegas, Nevada, USA (1994)

    Google Scholar 

  8. de Castro, L.N., Von Zuben, F.: Learning and optimization using the clonal selection principle. IEEE Transactions on Evolutionary Computation 6, 239–251 (2002)

    Article  Google Scholar 

  9. Kelsey, J., Timmis, J.: Immune inspired somatic contiguous hypermutation for function optimisation. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.M., Beyer, H.G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, pp. 207–218. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Coello Coello, C.A., Cruz-Cortés, N.: Hybridizing a genetic algorithm with an artificial immune system for global optimization. Engineering Optimization 36, 607–634 (2004)

    Article  MathSciNet  Google Scholar 

  11. Luh, G.C., Chueh, H.: Multi-objective optimal design of truss structure with immune algorithm. Computers and Structures 82, 829–844 (2004)

    Article  MathSciNet  Google Scholar 

  12. Cruz Cortés, N., Trejo-Pérez, D., Coello Coello, C.A.: Handling constrained in global optimization using artificial immune system. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 234–247. Springer, Heidelberg (2005)

    Google Scholar 

  13. Liang, J., Runarsson, T., Mezura-Montes, E., Clerc, M., Suganthan, P., Coello, C.C., Deb, K.: Problem definitions and evaluation criteria for the cec 2006 special session on constrained real-parameter optimization. Technical report, Nanyang Technological University, Singapore (2006)

    Google Scholar 

  14. Runarsson, T.P., Yao, X.: Stochastic Ranking for Constrained Evolutionary Optimization. IEEE Transactions on Evolutionary Computation 4, 284–294 (2000)

    Article  Google Scholar 

  15. Cagnina, L., Esquivel, S., Coello, C.C.: A bi-population PSO with a shake-mechanism for solving numerical optimization. In: Proceedings of the 2007 IEEE Congress on Evolutionary Computation, Singapore, IEEE Press, Los Alamitos (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alexander Gelbukh Ángel Fernando Kuri Morales

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aragón, V.S., Esquivel, S.C., Coello Coello, C.A. (2007). A Novel Model of Artificial Immune System for Solving Constrained Optimization Problems with Dynamic Tolerance Factor. In: Gelbukh, A., Kuri Morales, Á.F. (eds) MICAI 2007: Advances in Artificial Intelligence. MICAI 2007. Lecture Notes in Computer Science(), vol 4827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76631-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76631-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76630-8

  • Online ISBN: 978-3-540-76631-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics