Skip to main content

Inductive Logic Programming Algorithm for Estimating Quality of Partial Plans

  • Conference paper
MICAI 2007: Advances in Artificial Intelligence (MICAI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4827))

Included in the following conference series:

  • 1048 Accesses

Abstract

We study agents situated in partially observable environments, who do not have the resources to create conformant plans. Instead, they create conditional plans which are partial, and learn from experience to choose the best of them for execution. Our agent employs an incomplete symbolic deduction system based on Active Logic and Situation Calculus for reasoning about actions and their consequences. An Inductive Logic Programming algorithm generalises observations and deduced knowledge in order to choose the best plan for execution.

We show results of using PROGOL learning algorithm to distinguish “bad” plans, and we present three modifications which make the algorithm fit this class of problems better. Specifically, we limit the search space by fixing semantics of conditional branches within plans, we guide the search by specifying relative relevance of portions of knowledge base, and we integrate learning algorithm into the agent architecture by allowing it to directly access the agent’s knowledge encoded in Active Logic. We report on experiments which show that those extensions lead to significantly better learning results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andrews, R., Geva, S.: Rule extraction from local cluster neural nets. Neurocomputing 47 (2002)

    Google Scholar 

  2. Badea, L., Stanciu, M.: Refinement operators can be (weakly) perfect. In: Džeroski, S., Flach, P.A. (eds.) Inductive Logic Programming. LNCS (LNAI), vol. 1634, Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  3. Bertoli, P., Cimatti, A., Traverso, P.: Interleaving execution and planning for nondeterministic, partially observable domains. In: European Conference on Artificial Intelligence, pp. 657–661 (2004)

    Google Scholar 

  4. Blum, A., Langley, P.: Selection of relevant features and examples in machine learning. Artificial Intelligence 97(1-2), 245–271 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bonet, B., Geffner, H.: Planning and control in artificial intelligence: A unifying perspective. Applied Intelligence 14(3), 237–252 (2001)

    Article  MATH  Google Scholar 

  6. Cimatti, A., Roveri, M., Bertoli, P.: Conformant planning via symbolic model checking and heuristic search. Artificial Intelligence 159(1-2), 127–206 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dean, T., Wellman, M.P.: Planning and Control. Morgan Kaufmann, San Francisco (1991)

    Google Scholar 

  8. Dehaspe, L., De Raedt, L., Laer, W.: Claudien: The clausal discovery engine user’s guide, The CLAUsal DIscovery ENgine User’s Guide, Katholieke Universiteit Leuven (1996)

    Google Scholar 

  9. Dietterich, T.G., Flann, N.S.: Explanation-based learning and reinforcement learning: A unified view. In: Int. Conf. on Machine Learning, pp. 176–184 (1995)

    Google Scholar 

  10. Khardon, R.: Learning to take actions. Machine Learning 35(1), 57–90 (1999)

    Article  MATH  Google Scholar 

  11. Könik, T., Laird, J.E.: Learning goal hierarchies from structured observations and expert annotations. Machine Learning 64, 263–287 (2006)

    Article  MATH  Google Scholar 

  12. Langley, P., Choi, D.: Learning recursive control programs from problem solving. Journal of Machine Learning Research 7, 493–518 (2006)

    MathSciNet  Google Scholar 

  13. Mitchell, T.M.: Machine Learning. McGraw-Hill Higher Education, New York (1997)

    MATH  Google Scholar 

  14. Moyle, S.: Using theory completion to learn a robot navigation control program. In: Matwin, S., Sammut, C. (eds.) ILP 2002. LNCS (LNAI), vol. 2583, Springer, Heidelberg (2003)

    Google Scholar 

  15. Muggleton, S.: Inverse entailment and Progol. New Generation Computing, Special issue on Inductive Logic Programming 13(3-4), 245–286 (1995)

    Google Scholar 

  16. Nowaczyk, S.: Partial planning for situated agents based on active logic. In: ESSLLI 2006. Workshop on Logics for Resource Bounded Agents (2006)

    Google Scholar 

  17. Nowaczyk, S., Malec, J.: Learning to evaluate conditional partial plans. In: Sixth International Conference on Machine Learning and Applications (December 2007)

    Google Scholar 

  18. Nowaczyk, S., Malec, J.: Relative relevance of subsets of agent’s knowledge. In: Workshop on Logics for Resource Bounded Agents (September 2007)

    Google Scholar 

  19. Petrick, R.P.A., Bacchus, F.: Extending the knowledge-based approach to planning with incomplete information and sensing. In: International Conference on Automated Planning and Scheduling, pp. 2–11 (2004)

    Google Scholar 

  20. Purang, K., Purushothaman, D., Traum, D., Andersen, C., Perlis, D.: Practical reasoning and plan execution with active logic. In: Bell, J. (ed.) Proceedings of the IJCAI-99 Workshop on Practical Reasoning and Rationality, pp. 30–38 (1999)

    Google Scholar 

  21. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Systems. The MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  22. Ricci, F., Mam, S., Marti, P., Normand, V., Olmo, P.: CHARADE: a platform for emergencies management systems. Technical Report 9404-07, Povo (1994)

    Google Scholar 

  23. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 2nd edn. AI. Prentice-Hall, Englewood Cliffs (2003)

    Google Scholar 

  24. Sommer, E., Emde, W., Kietz, J.-U., Wrobel, S.: Mobal 3.0 user guide

    Google Scholar 

  25. van der Hoek, W., Wooldridge, M.: Tractable multiagent planning for epistemic goals. In: First International Conference on Autonomous Agents and Multiagent Systems (2002)

    Google Scholar 

  26. Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Artificial Intelligence Review 18(2), 77–95 (2002)

    Article  Google Scholar 

  27. Yamamoto, A.: Improving theories for inductive logic programming systems with ground reduced programs. Technical report, AIDA9619, Technische Hochschule Darmstadt (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alexander Gelbukh Ángel Fernando Kuri Morales

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nowaczyk, S., Malec, J. (2007). Inductive Logic Programming Algorithm for Estimating Quality of Partial Plans. In: Gelbukh, A., Kuri Morales, Á.F. (eds) MICAI 2007: Advances in Artificial Intelligence. MICAI 2007. Lecture Notes in Computer Science(), vol 4827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76631-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76631-5_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76630-8

  • Online ISBN: 978-3-540-76631-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics