Skip to main content

Learning Models of Relational MDPs Using Graph Kernels

  • Conference paper
MICAI 2007: Advances in Artificial Intelligence (MICAI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4827))

Included in the following conference series:

  • 1036 Accesses

Abstract

Relational reinforcement learning is the application of reinforcement learning to structured state descriptions. Model-based methods learn a policy based on a known model that comprises a description of the actions and their effects as well as the reward function. If the model is initially unknown, one might learn the model first and then apply the model-based method (indirect reinforcement learning). In this paper, we propose a method for model-learning that is based on a combination of several SVMs using graph kernels. Indeterministic processes can be dealt with by combining the kernel approach with a clustering technique. We demonstrate the validity of the approach by a range of experiments on various Blocksworld scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (1998)

    Google Scholar 

  2. Bertsekas, D.P., Tsitsiklis, J.N.: Neuro-Dynamic Programming. Athena Scientific (1996)

    Google Scholar 

  3. Dzeroski, S., Raedt, L.D., Driessens, K.: Relational reinforcement learning. Machine Learning 43(1-2), 7–52 (2001)

    Article  MATH  Google Scholar 

  4. Driessens, K., Ramon, J., Gärtner, T.: Graph kernels and gaussian processes for relational reinforcement learning. Machine Learning 64(1-3), 91–119 (2006)

    Article  MATH  Google Scholar 

  5. Tadepalli, P., Givan, R., Driessen, K.: Relational reinforcement learning: An overview. In: Proceedings of the ICML 2004 Workshop on Relational Reinforcement Learning (2004)

    Google Scholar 

  6. van Otterlo, M.: A survey of reinforcement learning in relational domains. Technical report, CTIT Technical Report, TR-CTIT-05-31, July 2005, p. 70, CTIT Technical Report Series, ISSN 1381-3625 (2005)

    Google Scholar 

  7. Vapnik, V.N.: The nature of statistical learning theory. Springer, New York (1995)

    MATH  Google Scholar 

  8. Kersting, K., Otterlo, M.V., Raedt, L.D.: Bellman goes relational. In: Brodley, C.E. (ed.) ICML, ACM, New York (2004)

    Google Scholar 

  9. Scanner, S., Boutilier, C.: Approximate linear programming for first-order mdps. In: Proceedings UAI 2005 (2005)

    Google Scholar 

  10. Hoelldobler, S., Karabaev, E., Skvortsova, O.: FluCaP: a heuristic search planner for first-order mdps. JAIR 27, 419–439 (2006)

    Google Scholar 

  11. Gärtner, T.: A survey of kernels for structured data. SIGKDD Explor. Newsl. 5(1), 49–58 (2003)

    Article  Google Scholar 

  12. Russell, S.J., Norvig, P.: Artificial intelligence: a modern approach. Prentice-Hall, USA (1995)

    MATH  Google Scholar 

  13. Gupta, N., Nau, D.S.: Complexity results for blocks-world planning. In: AAAI 1991. Proceedings of the Ninth National Conference on Artificial Intelligence, vol. 2, pp. 629–633. AAAI Press/MIT Press, Anaheim, California, USA (1991)

    Google Scholar 

  14. Croonenborghs, T., Ramon, J., Blockeel, H., Bruynooghe, M.: Online learning and exploiting relational models in reinforcement learning. In: Veloso, M.M. (ed.) IJCAI, pp. 726–731 (2007)

    Google Scholar 

  15. Pasula, H., Zettlemoyer, L.S., Kaelbling, L.P.: Learning probabilistic relational planning rules. In: ICAPS, pp. 73–82 (2004)

    Google Scholar 

  16. Benson, S.: Inductive learning of reactive action models. In: International Conference on Machine Learning, pp. 47–54 (1995)

    Google Scholar 

  17. Wang, X.: Learning planning operators by observation and practice. In: Artificial Intelligence Planning Systems, pp. 335–340 (1994)

    Google Scholar 

  18. Gil, Y.: Learning by experimentation: Incremental refinement of incomplete planning domains. In: ICML, pp. 87–95 (1994)

    Google Scholar 

  19. Vere, S.A.: Inductive learning of relational productions. In: Waterman, D., Hayes-Roth, F. (eds.) Pattern-Directed Inference Systems, Academic Press, London (1978)

    Google Scholar 

  20. Geibel, P., Wysotzki, F.: Learning relational concepts with decision trees. In: Saitta, L. (ed.) Machine Learning: Proceedings of the Thirteenth International Conference, pp. 166–174. Morgan Kaufmann, San Francisco (1996)

    Google Scholar 

  21. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001), Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alexander Gelbukh Ángel Fernando Kuri Morales

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Halbritter, F., Geibel, P. (2007). Learning Models of Relational MDPs Using Graph Kernels. In: Gelbukh, A., Kuri Morales, Á.F. (eds) MICAI 2007: Advances in Artificial Intelligence. MICAI 2007. Lecture Notes in Computer Science(), vol 4827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76631-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76631-5_39

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76630-8

  • Online ISBN: 978-3-540-76631-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics