Skip to main content

Evolved Kernel Method for Time Series

  • Conference paper
MICAI 2007: Advances in Artificial Intelligence (MICAI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4827))

Included in the following conference series:

  • 1008 Accesses

Abstract

An evolutionary algorithm for parameter estimation of a kernel method for noisy and irregularly sampled time series is presented. We aim to estimate the time delay between time series coming from gravitational lensing in astronomy. The parameters to estimate include the delay, the width of kernels or smoothing, and a regularization parameter. We use mixed types to represent variables within the evolutionary algorithm. The algorithm is tested on several artificial data sets, and also on real astronomical observations. The performance of our method is compared with the most popular methods for time delay estimation. An statistical analysis of results is given, where the results of our approach are more accurate and significant than those of other methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  2. Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  3. Rowe, J., Hidovic, D.: An evolution strategy using a continuous version of the gray-code neighbourhood distribution. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 725–736. Springer, Heidelberg (2004)

    Google Scholar 

  4. Pelt, J., Kayser, R., Refsdal, S., Schramm, T.: The light curve and the time delay of QSO 0957+561. Astronomy and Astrophysics 305(1), 97–106 (1996)

    Google Scholar 

  5. Kundic, T., Turner, E., Colley, W., Gott-III, J., Rhoads, J., Wang, Y., Bergeron, L., Gloria, K., Long, D., Malhorta, S., Wambsganss, J.: A robust determination of the time delay in 0957+561A,B and a measurement of the global value of Hubble’s constant. Astrophysical Journal 482(1), 75–82 (1997)

    Article  Google Scholar 

  6. Press, W., Rybicki, G., Hewitt, J.: The time delay of gravitational lens 0957+561, I. Methodology and analysis of optical photometric data. Astrophysical Journal 385(1), 404–415 (1992)

    Article  Google Scholar 

  7. Harva, M., Raychaudhury, S.: Bayesian estimation of time delays between unevenly sampled signals. In: IEEE International Workshop on Machine Learning for Signal Processing, pp. 111–122. IEEE Computer Society Press, Los Alamitos (2006)

    Chapter  Google Scholar 

  8. Ovaldsen, J., Teuber, J., Schild, R., Stabell, R.: New aperture photometry of QSO 0957+561; application to time delay and microlensing. Astronomy and Astrophysics 402(3), 891–904 (2003)

    Article  Google Scholar 

  9. Cuevas-Tello, J., Tiňo, P., Raychaudhury, S.: How accurate are the time delay estimates in gravitational lensing? Astronomy and Astrophysics 454, 695–706 (2006)

    Article  Google Scholar 

  10. Cuevas-Tello, J., Tiňo, P., Raychaudhury, S.: A kernel-based approach to estimating phase shifts between irregularly sampled time series: an application to gravitational lenses. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 614–621. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Press, W., Teukolsky, S., Vetterling, W., Flannery, B.: Numerical Recipes in C++: The Art of Scientific Computing, 2nd edn. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  12. Goldberg, D.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  13. Chipperfield, A.J., Fleming, P.J., Pohlheim, H., Fonseca, C.M.: Genetic Algorithm Toolbox for use with MATLAB. Automatic Control and Systems Engineering, University of Sheffield. 1.2 edn. (1996), http://www.shef.ac.uk/acse/research/ecrg/getgat.html

  14. Kochanek, C.S., Schechter, P.L.: The Hubble Constant from Gravitational Lens Time Delays. In: Freedman, W.L. (ed.) Measuring and Modeling the Universe, p. 117 (2004)

    Google Scholar 

  15. Giel, O., Lehre, P.: On the effect of populations in evolutionary multi-objective optimization. In: Keijzer, M., et al. (eds.) Genetic and Evolutionary Computation Conference (GECCO), vol. 1, pp. 651–658. ACM Press, New York (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alexander Gelbukh Ángel Fernando Kuri Morales

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cuevas-Tello, J.C. (2007). Evolved Kernel Method for Time Series. In: Gelbukh, A., Kuri Morales, Á.F. (eds) MICAI 2007: Advances in Artificial Intelligence. MICAI 2007. Lecture Notes in Computer Science(), vol 4827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76631-5_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76631-5_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76630-8

  • Online ISBN: 978-3-540-76631-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics