Abstract
In this study, ant colony optimization (ACO) is integrated with the self-organizing map (SOM) for image segmentation. A comparative study with the combination of ACO and Simple Competitive Learning (SCL) is provided. ACO follows a learning mechanism through pheromone updates. In addition, pheromone and heuristic information are normalized and the effects on the results are investigated in this report. Preliminary experimental results indicate that the normalization of the parameters can improve the image segmentation results.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley, Reading (1992)
Pham, D.T., Karaboga, D.: Intelligent Optimization Techniques: Genetic Algorithms, Tabu Search, Simulated Annealing and Neural Networks. Springer, Heidelberg (2000)
Hung, C.C., Scheunders, P.M., Pham, M.-C.S., Coleman, T.: Using Intelligent Optimization Techniques in the K-means Algorithm for Multispectral Image Classification. Int. J. Fuzzy Syst. 6(3), 105–115 (2004)
Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cyb. Part B 26, 29–41 (1996)
Yuqing, P., Xiangdan, H., Shang, L.: The K-means clustering Algorithm Based on Density and Ant Colony. In: International Conference on Neural Networks and Signal Processing, Nanjing, China, vol. 1, pp. 457–460 (2003)
Monmarch´e, N.: On data clustering with artificial ants. In: Freitas, A.A. (ed.) AAAI-1999 and GECCO-1999 Workshop on Data Mining with Evolutionary Algorithms: Research Directions, Orlando, Florida, pp. 23–26 (1999)
Monmarch´e, N., Slimane, M., Venturini, G.: AntClass: discovery of clusters in numeric data by an hybridization of ant colony with k-means algorithm, Internal Report no. 213 Laboratoire d’Informatique, E3i, Universite de Tours, Tours, France (1999)
Bin, W., Yi, Z., Shaohui, L., Zhongzhi, S.: CSIM: A Document Clustering Algorithm Based on Swarm Intelligence. In: Congress on Evolutionary Computation, Honolulu, HI, vol. 1, pp. 477–482 (2002)
Kanade, P.M., Hall, L.O.: Fuzzy Ants as a Clustering Concept. In: Proceedings of 22nd International Conference of the North American Fuzzy Information Processing Society, Chicago, IL, pp. 227–232 (2003)
Kohonen, T.: The Self-Organizing Map. Proceedings of the IEEE 78(9), 1464–1480 (1990)
Vesanto, J., Alhoniemi, E.: Clustering of the Self-Organizing Map. IEEE transaction on Neural Networks 11(3) (2000)
Rumelhart, D.E., Zipser, D.: Feature discovery by competitive learning. In: McClelland, J.L., Rumelhart, D.E. (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, pp. 151–193. MIT Press, Cambridge (1986)
Saatchi, S., Hung, C.C., Kuo, B.C.: A comparison of the improvement of k-means and simple competitive learning algorithms using ant colony optimization. In: 7th International Conference on Intelligent Technology, Taipei, Taiwan (2006)
Saatchi, S., Hung, C.C.: Hybridization of the Ant Colony Optimization with the K-means Algorithm for Clustering. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 511–520. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Saatchi, S., Hung, CC. (2007). Using Ant Colony Optimization and Self-organizing Map for Image Segmentation. In: Gelbukh, A., Kuri Morales, Á.F. (eds) MICAI 2007: Advances in Artificial Intelligence. MICAI 2007. Lecture Notes in Computer Science(), vol 4827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76631-5_54
Download citation
DOI: https://doi.org/10.1007/978-3-540-76631-5_54
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-76630-8
Online ISBN: 978-3-540-76631-5
eBook Packages: Computer ScienceComputer Science (R0)