Abstract
A central issue in the use of vector quantization (VQ) for speech or image compression is the specification of the codebook. In this paper, the design of an evolutionary codebook based on morphological associative memories (MAM) is presented. The algorithm proposed for codebook generation involves two steps. First, having a set of images, one of the images is chosen to create the initial codebook. The algorithm applied to the image for codebook generation uses the morphological autoassociative memories (MAAM). Second, an evolution process of codebook creation occurs applying the algorithm on new images. This process adds the information codified of the next image to the codebook allowing to recover the images with better quality without affecting the processing speed. The performance of the generated codebook is analyzed in case when MAAM in both max and min categories are used. The presented algorithm was applied to image set after discrete cosine transformation followed by a quantization process. The proposed algorithm has a high processing speed and provides a notable improvement in signal to noise ratio.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Linde, Y., Buzo, A., Gray, R.: An Algorithm for Vector Quantizer Design. IEEE Transactions on Communications 28(1), 84–95 (1980)
Huang, C.M., Harris, R.W.: A Comparison of Several Vector Quantization Codebook Generations Approaches. IEEE Trans. on Image Proce. 2(1), 108–112 (1993)
Equitz, W.H.: A New Vector Quantization Clustering Algorithm. IEEE Transactions on Acoustics, Speech and Signal Processing 37(10), 1568–1575 (1989)
Vaisey, J., Gersho, A.: Simulated Annealing and Codebook Design. In: IEEE Proc. ICASSP 1988, pp. 1176–1179 (1988)
Flanagan, J.K., Morrell, D.R., Frost, R.L., Read, C.J., Nelson, B.E.: Vector Quantization Codebook Generation Using Simulated Annealing. IEEE Proc., 1759–1762 (1989)
Kohonen, T.: Automatic formation of topological maps of patterns in a self-organizing system. In: Oja, E., Simula, O. (eds.) Proc. 2SCIA, Scand. Conf. on Image Analysis, Helsinki, Finland, pp. 214–220 (1981)
Amerijckx, C., Verleysen, M., Thissen, P., Legat, J-D.: Image Compression by Self-Organized Kohonen Map. IEEE Trans. on Neural Networks 9(3), 503–507 (1998)
Amerijckx, C., Legat, J.-D., Verleysen, M.: Image Compression Using Self-Organizing Maps. Systems Analysis Modelling Simulation 43(11), 1529–1543 (2003)
Ritter, G.X., Sussner, P., Díaz de León, J.L.: Morphological Associative Memories. IEEE Trans. on Neural Networks 9(2), 281–293 (1998)
Yáñes y, C., Díaz de León, J.L.: Memorias Morfológicas Heteroasociativas. CIC, IPN, México, IT 57, Serie Verde (2001), ISBN 970-18-6697-5
Yáñes y, C., Díaz de León, J.L.: Memorias Morfológicas Autoasociativas. CIC, IPN, México, IT 58, Serie Verde (2001), ISBN 970-18-6698-3
Guzman, E., Pogrebnyak, O., Yáñez, C., Moreno, J.A.: Image Compression Algorithm Based on Morphological Associative Memories. In: Martínez-Trinidad, J.F., Carrasco Ochoa, J.A., Kittler, J. (eds.) CIARP 2006. LNCS, vol. 4225, pp. 519–528. Springer, Heidelberg (2006)
Ritter, G.X., Díaz de León, J.L., Sussner, P.: Morphological Bidirectional Associative Memories. Neural Networks 12(6), 851–867 (1999)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Guzmán, E., Pogrebnyak, O., Yañez, C. (2007). Design of an Evolutionary Codebook Based on Morphological Associative Memories. In: Gelbukh, A., Kuri Morales, Á.F. (eds) MICAI 2007: Advances in Artificial Intelligence. MICAI 2007. Lecture Notes in Computer Science(), vol 4827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76631-5_57
Download citation
DOI: https://doi.org/10.1007/978-3-540-76631-5_57
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-76630-8
Online ISBN: 978-3-540-76631-5
eBook Packages: Computer ScienceComputer Science (R0)