Abstract
In this work we assume a frontal view of a face for the lips shape extraction, then the first step is locate a face inside a digital image, for this task we use techniques based in color to extract only the pixels with skin tone, a templates based in integral projections are applied to verify and locate the face, using integral projections, we locate and define a region of interest for lips. Previously a statistical model of lips (ASM) was created in the same way, local appearance patterns of landmarks are modeled using Local Binary Patterns (LBP) , in this model we try to capture a variation from a closed lips to an opened lips. For the search task Local Binary Pattern Histogram (LBPH) are used.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gandhi, A.: Content-Based Image Retrieval: Plant Species Identification. Master’s thesis, Oregon State University (September 2002)
Xu, C., Prince, J.L.: Gradient Vector Flow: A New External Force for Snakes. In: Proc. IEEE Conf. on Comp. Vis. Patt. Recog (CVPR), pp. 66–71. Comp. Soc. Press, Los Alamitos (1997)
Mateos, G.G., García, A.R., Lopez-de-Teruel, P.E.: Face Detection Using Integral Projection Models. In: Caelli, T.M., Amin, A., Duin, R.P.W., Kamel, M.S., de Ridder, D. (eds.) SPR 2002 and SSPR 2002. LNCS, vol. 2396, pp. 6–9. Springer, Heidelberg (2002)
Mateos, G.G.: Refining Face Tracking with Integral Projections. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 9–11. Springer, Heidelberg (2003)
Kovac, J., Peer, P., Solina, F.: Human Skin Colour Clustering for Face Detection. In: Zajc, Baldomir (eds.) EUROCON 2003 -International Conference on Computer as a Tool, Ljubljana, Slovenia (2003)
Movellan, J.R.: Visual Speech Recognition with Stochastic Networks. In: Tesauro, G., Touretzky, D., Leen, T. (eds.) ANIPS, vol. 7, pp. 851–858. The MIT Press, Cambridge (1995)
Paliwal, K.K., Agarwal, A., Sinha, S.S.: A modification over Sakoe and Chiba’s dynamic time warping algorithm for isolated word recognition. Signal Processing 4(4), 329–333 (1982) (also in Proc. IEEE Intern. Conf. on Acoustics, Speech and Signal Processing, Paris, France, pp. 1259–1261, 1982)
Wang, K., Gasser, T.: Alignment of curves by dynamic time warping. Annals of Statistics 25(3), 1251–1276 (1997)
Fan, L., Sung, K.K.: Face Detection and Pose Alignment Using Color, Shape and Texture Information, vs. In: Third IEEE International Workshop on Visual Surveillance (VS’2000), p. 19 (2000)
Nordstrøm, M.M., Larsen, M., Sierakowski, J., Stegmann, M.B.: The IMM Face Database—An Annotated Dataset of 240 Face Images, technical report, Informatics and Mathematical Modelling, Technical Univ. of Denmark, DTU (May 2004)
Psychological Image Collection at Stirling (PICS), (last access in 15/12/, 2006), Available at http://pics.psych.stir.ac.uk/
Niels, R.: Dynamic Time Warping. An Intuitive Way of Handwriting Recogntion. Master’s thesis, Radboud University Nijmegen, Faculty of Social Sciences, Department of Artificial Intelligence / Cognitive Science, Nijmegen, The Netherlands (2004)
Hsu, R.-L., Abdel-Mottaleb, M., Jain, A.K.: Face detection in color images. IEEE Trans. Pattern Analysis and Machine Intelligence 24(5), 696–706 (2002)
Salvador, S., Chan, P.: FastDTW: Toward Accurate Dynamic Time Warping in Linear Time and Space. In: KDD Workshop on Mining Temporal and Sequential Data, pp. 70–80 (2004)
Hazen, T.J., Saenko, K., La, C.-H., Glass, J.R.: A segment-based audio-visual speech recognizer: Data collection, development and initial experiments. In: Proceedings of the International Conference on Multimodal Interfaces, State College, Pennsylvania, pp. 235–242 (October 2004)
Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on feature distributions. Pattern Recognition 29, 51–59.17. Cootes, T.F., Edwards, G.J., Taylor, C.J. Acive appareance models. IEEE Trans. On Pattern Recognition and Machine Intelligence 23(6), 681–685 (1996)
Huang, X., Li, S.Z., Wang, Y.: Shape localization based on statistical method using extended local binary, Image and Graphics. In: Proceedings. Third International Conference on Volume, Issue, December 18-20, 2004, pp. 184–187 (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Morán L., L.E., Pinto-Elías, R. (2007). Lips Shape Extraction Via Active Shape Model and Local Binary Pattern. In: Gelbukh, A., Kuri Morales, Á.F. (eds) MICAI 2007: Advances in Artificial Intelligence. MICAI 2007. Lecture Notes in Computer Science(), vol 4827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76631-5_74
Download citation
DOI: https://doi.org/10.1007/978-3-540-76631-5_74
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-76630-8
Online ISBN: 978-3-540-76631-5
eBook Packages: Computer ScienceComputer Science (R0)