Abstract
This paper presents a novel approach for continuous gesture recognition using depth range sensors. Our approach can be seen as an extension of Motion Templates [1] using multiple layers that register the three-dimensional nature of the human gestures. Our Multi-Layered templates are created using depth silhouettes, the extension of binary silhouettes when depth information is available. Both the original Motion Templates and our extension have been tested using several classification approaches in order to determine the best one. These approaches include the use of Hu-moments (originally employed in [1]), PCA and Support Vector Machines. Finally, we propose a methodology for creating a continuous gesture recogniser using motion templates. The methodology is applied both to our representation approach and to the original proposal. In order to validate our proposal, several stereo-video sequences have been recorded showing eight people performing a total of ten different gestures that are prone to be confused when monocular vision is used. The conducted experiments show that our proposal performs a 20% better than the original method.
This work has been partially supported by the Spanish MEC project TIN2006-05565 and Andalusian Regional Government project TIC1670.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bobick, A.F., Davis, J.W.: The recognition of human movement using temporal templates. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 257–267 (2001)
Borenstein, J., Koren, Y.: Visual pattern recognition by moment invariants. IRE Trans. on Information Theory 8, 179–187 (1962)
Chen, F.S., Fu, C.M., Huang, C.L.: Hand gesture recognition using a real-time tracking method and hidden Markov models. Image and Vision Computing 21, 745–758 (2003)
Cortes, C., Vapnik, V.: Support-vector network. Machine Learning 20, 273–297 (1995)
Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press, London (1990)
Kale, A., Sundaresan, A., Rajagopalan, A., Cuntoor, N., RoyChowdhury, A., Kruger, V., Chellappa, R.: Identification of humans using gait. IEEE Transactions on Image Processing 13, 1163–1173 (2004)
Kang, H., Lee, C.W., Jung, K.: Recognition-based gesture spotting in video games. Pattern Recognition Letters 25, 1701–1714 (2004)
Lam, T.H.W., Lee, R.S.T., Zhang, D.: Human gait recognition by the fusion of motion and static spatio-temporal templates. Pattern Recognition 40, 2563–2573 (2007)
Luck, J., Small, D., Little, C.Q.: Real-time tracking of articulated human models using a 3d shape-from-silhouette method. In: Klette, R., Peleg, S., Sommer, G. (eds.) RobVis 2001. LNCS, vol. 1998, pp. 19–26. Springer, Heidelberg (2001)
Manevitz, L.M., Yousef, M.: One-class svms for document classication. Journal of Machine Learning Research 2, 139–154 (2001)
Nam, Y., Wohn, K.: Recognition of hand gestures with 3d, nonlinear arm movement. Pattern Recognition Letters 18, 105–113 (1997)
Nickel, K., Stiefelhagen, R.: Visual recognition of pointing gestures for human-robot interaction. Image and Vision Computing (in press, 2007)
Muñoz Salinas, R., Aguirre, E., García-Silvente, M.: People detection and tracking using stereo vision and color. Image and Vision Computing (25), 995–1007 (2007)
Muñoz Salinas, R., Aguirre, E., García-Silvente, M., González, A.: People detection and tracking through stereo vision for human-robot interaction. In: Gelbukh, A., de Albornoz, Á., Terashima-Marín, H. (eds.) MICAI 2005. LNCS (LNAI), vol. 3789, pp. 337–346. Springer, Heidelberg (2005)
Weinland, D., Ronfard, R., Boyer, E.: Free viewpoint action recognition using motion history volumes. Computer Vision and Image Understanding 104, 249–257 (2006)
Yang, H-S., Kim, J-M., Park, S-K.: Three dimensional gesture recognition using modified matching algorithm. In: Wang, L., Chen, K., Ong, Y.S. (eds.) ICNC 2005. LNCS, vol. 3611, pp. 224–233. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Muñoz-Salinas, R., Aguirre, E., García-Silvente, M., Gómez, M. (2007). Continuous Stereo Gesture Recognition with Multi-layered Silhouette Templates and Support Vector Machines. In: Gelbukh, A., Kuri Morales, Á.F. (eds) MICAI 2007: Advances in Artificial Intelligence. MICAI 2007. Lecture Notes in Computer Science(), vol 4827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76631-5_75
Download citation
DOI: https://doi.org/10.1007/978-3-540-76631-5_75
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-76630-8
Online ISBN: 978-3-540-76631-5
eBook Packages: Computer ScienceComputer Science (R0)