Skip to main content

Discovering Promising Regions to Help Global Numerical Optimization Algorithms

  • Conference paper
MICAI 2007: Advances in Artificial Intelligence (MICAI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4827))

Included in the following conference series:

Abstract

We have developed an algorithm using a Design of Experiments technique for reduction of search-space in global optimization problems. Our approach is called Domain Optimization Algorithm. This approach can efficiently eliminate search-space regions with low probability of containing a global optimum. The Domain Optimization Algorithm approach is based on eliminating non-promising search-space regions, which are identifyed using simple models (linear) fitted to the data. Then, we run a global optimization algorithm starting its population inside the promising region. The proposed approach with this heuristic criterion of population initialization has shown relevant results for tests using hard benchmark functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Chan, K.Y., Aydin, M.E., Fogarty, T.C.: A taguchi method-based crossover operator for the parametrical problems. In: Sarker, R., Reynolds, R., Abbass, H., Tan, K., McKay, B., Essam, D., Gedeon, T. (eds.) CEC 2003. Proceedings of the 2003 Congress on Evolutionary Computation, 8-12 December 2003, pp. 971–977. IEEE Computer Society Press, Los Alamitos (2003)

    Chapter  Google Scholar 

  2. Chen, S., Smith, S.: Improving genetic algorithms by search space reduction (with applications to flow shop scheduling). In: GECCO 1999. Proceedings of the Genetic and Evolutionary Computation Conference, Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  3. Cribari-Neto, F., Zarkos, S.G.: Econometric and statistical computing using ox. Comput. Econ. 21(3), 277–295 (2003)

    Article  MATH  Google Scholar 

  4. Eberhart, R.C., Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of the Sixth International Symposium on Micromachine and Human Science, Nagoya, Japan, pp. 39–43 (1995)

    Google Scholar 

  5. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  6. Hinkelmann, K., Kempthorne, O.: Design and Anaysis of Experiments: Introduction to Experimental Design. In: Wiley Series in Probability and Mathematical Statistics, vol. 1 (1994)

    Google Scholar 

  7. Liang, K.-H., Yao, X., Newton, C.: Evolutionary search of approximated n-dimensional landscapes. International Journal of Knowledge-Based Intelligent Engineering Systems 4(3), 172–183 (2000)

    Google Scholar 

  8. Lung, Y.W., Wang, Y.: An orthogonal genetic algorithm with quantization for global numerical oplimization. IEEE Transactions on Ewlurionary Computation 5, 41–53 (2001)

    Article  Google Scholar 

  9. Magalhaes, S.R.S.: A avaliação de métodos para a comparação de modelos de regressão por simulação de dados. Master’s thesis (Mestrado em Estatística e Experimentação Agropecuária), Universidade Federal de Lavras, Lavras (2002)

    Google Scholar 

  10. Montgomery, D.C.: Design and Anaysis of Experiments, vol. 1. John Wiley and Sons, Chichester (1997)

    Google Scholar 

  11. Myers, R.H., Montgomery, D.C.: Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 2nd edn. Wiley, Chichester (2002)

    Google Scholar 

  12. Pelikan, M., Goldberg, D.E., Cant-paz, E.: Linkageproblem, distribution estimation and bayesian networks. Evolutionary Computation 3(8), 311–340 (2000)

    Article  Google Scholar 

  13. Reeves, C.R., Wright, C.C.: Epistasis in genetic algorithms: an experimental design perspective. In: 6th International Conference on Genetic Algorithms, Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  14. Reeves, C.R., Wright, C.C.: An experimental design perspective on genetic algorithms. In: Whitley, D., Vosa, M. (eds.) Foundations of Genetic Algorithms 3, Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  15. Srinivas, M., Patnaik, L.M.: Learning neural network weights using genetic algorithms- improving performance by search-space reduction. In: 1991 IEEE International Joint Conference on Neural Networks, November 18-21, 1991, pp. 2331–2336. IEEE Computer Society Press, Los Alamitos (1991) IEEE Cat. No. 91CH3065-0

    Chapter  Google Scholar 

  16. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11(4), 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  17. Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.-P., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the cec 2005 special session on real-parameter optimization. Technical Report KanGAL Report 2005005, Nanyang Technological University, Singapore (2005)

    Google Scholar 

  18. Wall, M.: Galib - a c++ library of genetic algorithm components (2006), http://lancet.mit.eduga/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alexander Gelbukh Ángel Fernando Kuri Morales

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Melo, V.V., Delbem, A.C.B., Pinto Júnior, D.L., Federson, F.M. (2007). Discovering Promising Regions to Help Global Numerical Optimization Algorithms. In: Gelbukh, A., Kuri Morales, Á.F. (eds) MICAI 2007: Advances in Artificial Intelligence. MICAI 2007. Lecture Notes in Computer Science(), vol 4827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76631-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76631-5_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76630-8

  • Online ISBN: 978-3-540-76631-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics