Skip to main content

Clustering Search Approach for the Traveling Tournament Problem

  • Conference paper
MICAI 2007: Advances in Artificial Intelligence (MICAI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4827))

Included in the following conference series:

  • 843 Accesses

Abstract

The Traveling Tournament Problem (TTP) is an optimization problem that represents some types of sports timetabling, where the objective is to minimize the total distance traveled by the teams. This work proposes the use of a hybrid heuristic to solve the mirrored TTP (mTTP), called Clustering Search (*CS), that consists in detecting supposed promising search areas based on clustering. The validation of the results will be done in benchmark problems available in literature and real benchmark problems, e.g. Brazilian Soccer Championship.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anagnostopoulos, A., Michel, L., Van Hentenryck, P., Vergados, Y.: A Simulated Annealing Approach to the Traveling Tournament Problem. In: Proceedings of Cpaior 2003 (2003)

    Google Scholar 

  2. Biajoli, F.L., Chaves, A.A., Mine, O.M., Souza, M.J.F., Pontes, R.C., Lucena, A., Cabral, L.F.: Scheduling the Brazilian Soccer Championship: A Simulated Annealing Approach. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 433–437. Springer, Heidelberg (2005)

    Google Scholar 

  3. Biajoli, F.L., Lorena, L.A.N.: Mirrored Traveling Tournament Problem: An Evolutionary Approach. In: Sichman, J.S., Coelho, H., Rezende, S.O. (eds.) IBERAMIA 2006 and SBIA 2006. LNCS (LNAI), vol. 4140, pp. 208–217. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Concílio, R., Zuben, F.J.: Uma Abordagem Evolutiva para Geração Automática de Turnos Completos em Torneios. Revista Controle e Automação 13(2), 105–122 (2002)

    Google Scholar 

  5. Costa, D.: An Evolutionary Tabu Search Algorithm and the NHL Scheduling Problem. Infor. 33(3), 161–178 (1995)

    MATH  Google Scholar 

  6. Dinitz, J., Lamken, E., Wallis, W.D.: Scheduling a Tournament. In: Colbourn, C.J., Dinitz, J. (eds.) Handbook of Combinatorial Designs, pp. 578–584. CRC Press, Boca Raton, USA (1995)

    Google Scholar 

  7. Easton, K., Nemhauser, G., Trick, M.: The Traveling Tournament Problem Description and Benchmarks. In: CP 1999, pp. 580–589 (2001)

    Google Scholar 

  8. Glover, F.: Tabu search and adaptive memory programing: Advances, applications and challenges. In: Interfaces in Computer Science and Operations Research. [S.l.], p. 175. Kluwer, Dordrecht (1996)

    Google Scholar 

  9. Hamiez, J.P., Hao, J.K.: Solving The Sports League Scheduling Problem with Tabu Search. In: Nareyek, A. (ed.) Local Search for Planning and Scheduling. LNCS (LNAI), vol. 2148, pp. 24–36. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Hentenryck, P.V., Vergados, Y.: Traveling tournament scheduling: A systematic evaluation of simulated annealling. In: Beck, J.C., Smith, B.M. (eds.) CPAIOR 2006. LNCS, vol. 3990, pp. 228–243. Springer, Heidelberg (2006)

    Google Scholar 

  11. Loureno, H.R., Martin, O., Sttzle, T.: Iterated local search. In: Handbook of Metaheuristics, pp. 321–353. Kluwer Academic Publishers, Norwell (2002)

    Google Scholar 

  12. Mladenovic, N., Hansen, P.: Variable neighborhood search. Computers and Operations Research 24, 1097–1100 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Nemhauser, G., Trick, M.: Scheduling a Major College Basketball Conference. Operations Research 46(1), 1–8 (1998)

    Article  Google Scholar 

  14. Oliveira, A.C.M.: Algoritmos Evolutivos Hbridos com Deteco de Regies Promissoras em Espaos de Busca Contnuo e Discreto. 200 p. Tese (Doutorado) Instituto Nacional de Pesquisa Operacional (INPE), So Jos dos Campos - SP (2004)

    Google Scholar 

  15. Oliveira, A.C.M., Lorena, L.A.N.: Pattern sequencing problems by clustering search. Lecture Notes in Artificial Intelligence Series, vol. 4140, pp. 218–227. Springer, Heidelberg (2006)

    Google Scholar 

  16. Ribeiro, C.C., Urrutia, S.: Heuristics for the Mirrored Traveling Tournament Problem. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 323–342. Springer, Heidelberg (2005)

    Google Scholar 

  17. Schönberger, J., Mattfeld, D.C., Kopfer, H.: Memetic Algorithm Timetabling for Non-Commercial Sport Leagues. European Journal of Operational Research 153(1), 102–116 (1989)

    Article  Google Scholar 

  18. Zhang, H.: Generating College Conference Basketball Schedules by a Sat Solver. In: Proceedings Of The Fifth International Symposium on the Theory and Applications of Satisfiability Testing, Cincinnati, pp. 281–291 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alexander Gelbukh Ángel Fernando Kuri Morales

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Biajoli, F.L., Lorena, L.A.N. (2007). Clustering Search Approach for the Traveling Tournament Problem. In: Gelbukh, A., Kuri Morales, Á.F. (eds) MICAI 2007: Advances in Artificial Intelligence. MICAI 2007. Lecture Notes in Computer Science(), vol 4827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76631-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76631-5_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76630-8

  • Online ISBN: 978-3-540-76631-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics