Skip to main content

E-Gen: Automatic Job Offer Processing System for Human Resources

  • Conference paper
MICAI 2007: Advances in Artificial Intelligence (MICAI 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4827))

Included in the following conference series:

  • 944 Accesses

Abstract

The exponential growth of the Internet has allowed the development of a market of on-line job search sites. This paper aims at presenting the E-Gen system (Automatic Job Offer Processing system for Human Resources). E-Gen will implement two complex tasks: an analysis and categorisation of job postings, which are unstructured text documents (e-mails of job listings possibly with an attached document), an analysis and a relevance ranking of the candidate answers (cover letter and curriculum vitae). This paper aims to present a strategy to resolve the first task: after a process of filtering and lemmatisation, we use vectorial representation before generating a classification with Support Vector Machines. This first classification is afterwards transmitted to a ”corrective” post-process which improves the quality of the solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bizer, C., Heese, R., Mochol, M., Oldakowski, R., Tolksdorf, R., Eckstein, R.: The impact of semantic web technologies on job recruitment processes. In: International Conference Wirtschaftsinformatik (WI 2005), Bamberg, Germany (2005)

    Google Scholar 

  2. Rafter, R., Bradley, K., Smyt, B.: Automated Collaborative Filtering Applications for Online Recruitment Services, 363–368 (2000)

    Google Scholar 

  3. Rafter, R., Smyth, B.: (Passive Profiling from Server Logs in an Online Recruitment Environment)

    Google Scholar 

  4. Bourse, M., Leclère, M., Morin, E., Trichet, F.: Human resource management and semantic web technologies. In: Proceedings, 1st International Conference on Information & Communication Technologies: from Theory to Applications (ICTTA) (2004)

    Google Scholar 

  5. Morin, E., Leclère, M., Trichet, F.: The semantic web in e-recruitment. In: The First European Symposium of Semantic Web (ESWS’2004) (2004)

    Google Scholar 

  6. Rafter, R., Smyth, B., Bradley, K.: (Inferring Relevance Feedback from Server Logs: A Case Study in Online Recruitment)

    Google Scholar 

  7. Zighed, D.A., J., C.: Data Mining and CV analysis 17, 189–200 (2003)

    Google Scholar 

  8. Bellman, R.: Adaptive Control Processes. Princeton University Press, Princeton (1961)

    MATH  Google Scholar 

  9. Manning, D., Schütze, H.: Foundantions of Statistical Natural Language Processing. MIT Press, Cambridge (2002)

    Google Scholar 

  10. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995)

    MATH  Google Scholar 

  11. Joachims, T.: Making large scale SVM learning practical. Advances in kernel methods: support vector learning, pp. 169–184. MIT Press, Cambridge (1999)

    Google Scholar 

  12. Grilheres, B., Brunessaux, S., Leray, P.: Combining classifiers for harmful document filtering. In: RIAO 2004, pp. 173–185 (2004)

    Google Scholar 

  13. Kessler, R., Torres-Moreno, J.M., El-Bèze, M.: Classification automatique de courriers électroniques par des méthodes mixtes d’apprentissage, 93–112 (2006)

    Google Scholar 

  14. Fan, R.-E., Chen, P.-H., Lin, C.-J.: Towards a Hybrid Abstract Generation System. In: Working set selection using the second order information for training SVM, pp. 1889–1918 (2005)

    Google Scholar 

  15. Viterbi, A.J.: Error bounds for convolutional codes and an asymptotically optimal decoding algorithm 13, 260–269 (1967)

    Google Scholar 

  16. Land, A.H., Doig, A.G.: An Automatic Method of Solving Discrete Programming Problems 28, 497–520 (1960)

    Google Scholar 

  17. El-Bèze, M., Torres-Moreno, J., Béchet, F.: Un duel probabiliste pour départager deux Présidents. In: RNTI coming soon, pp. 1889–1918 (2007)

    Google Scholar 

  18. Reynar, J., Ratnaparkhi, A.: A Maximum Entropy Approach to Identifying Sentence Boundaries. In: Proceedings of the Fifth Conference on Applied Natural Language Processing, Washington, D.C., pp. 16–19 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alexander Gelbukh Ángel Fernando Kuri Morales

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kessler, R., Torres-Moreno, J.M., El-Bèze, M. (2007). E-Gen: Automatic Job Offer Processing System for Human Resources. In: Gelbukh, A., Kuri Morales, Á.F. (eds) MICAI 2007: Advances in Artificial Intelligence. MICAI 2007. Lecture Notes in Computer Science(), vol 4827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76631-5_94

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76631-5_94

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76630-8

  • Online ISBN: 978-3-540-76631-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics