Abstract
Prediction partners’ behaviors in negotiation has been an active research direction in recent years. By employing the estimation results, agents can modify their own ways in order to achieve an agreement much quicker or to look after much higher benefits for themselves. Some of estimation strategies have been proposed by researchers to predict agents’ behaviors, and most of them are based on machine learning mechanisms. However, when the application domains become open and dynamic, and agent relationships are complicated, it is difficult to train data which can be used to predict all potential behaviors of all agents in a multi-agent system. Furthermore because the estimation results may have errors, a single result maybe not accurate and practical enough in most situations. In order to address these issues mentioned above, we propose a power regression analysis mechanism to predict partners’ behaviors in this paper. The proposed approach is based only on the history of the offers during the current negotiation and does not require any training process in advance. This approach can not only estimate a particular behavior, but also an interval of behaviors according to an accuracy requirement. The experimental results illustrate that by employing the proposed approach, agents can gain more accurate estimation results on partners’ behaviors by comparing with other two estimation functions.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kraus, S.: Strategic Negotiation in Multiagent Environments. The MIT Press, Cambridge, Massachusetts (2001)
Fatima, S., Wooldridge, M., Jennings, N.: Optimal Agendas for Multi-issue Negotiation. In: AAMAS 2003. Second International Joint Conference on Autonomous Agents and Multi-Agent Systems, pp. 129–136. ACM Press, New York (2003)
Brzostowski, J., Kowalczyk, R.: On Possibilistic Case-Based Reasoning for Selecting Partners in Multi-agent Negotiation. In: Webb, G.I., Yu, X. (eds.) AI 2004. LNCS (LNAI), vol. 3339, pp. 694–705. Springer, Heidelberg (2004)
Munroe, S., Luck, M., d’Inverno, M.: Motivation-Based Selection of Negotiation Partners. In: AAMAS 2004. 3rd International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 1520–1521. IEEE Computer Society, Los Alamitos (2004)
Parsons, S., Sierra, C., Jennings, N.: Agents that Reason and Negotiate by Arguing. Journal of Logic and Computation 8(3), 261–292 (1998)
Zeng, D., Sycara, K.: Bayesian Learning in Negotiation. International Journal of Human-Computer Studies 48(1), 125–141 (1998)
Chajewska, U., Koller, D., Ormoneit, D.: Learning An Agent’s Utility Function by Observing Behavior. In: Proc. 18th International Conf. on Machine Learning, pp. 35–42. Morgan Kaufmann, San Francisco, CA (2001)
Faratin, P., Sierra, C., Jennings, N.: Negotiation Decision Functions for Autonomous Agents. Journal of Robotics and Autonomous Systems 24(3-4), 159–182 (1998)
Fatima, S., Wooldridge, M., Jennings, N.: An Agenda-Based Framework for Multi-Issue Negotiation. Artificial Intelligence 152(1), 1–45 (2004)
Schapire, R.P., McAllester, D., Littman, M., Csirik, J.: Modeling Auction Price Uncertainty Using Boosting-based Conditional Density Estimation. In: ICML 2002. Machine Learning, Proceedings of the Nineteenth International Conference, pp. 546–553. Morgan Kaufmann, San Francisco (2002)
Gal, Y., Pfeffer, A.: Predicting Peoples Bidding Behavior in Negotiation. In: AAMAS 2006. 5th International Joint Conference on Autonomous Agents and Multiagent Systems (2006)
Brzostowski, J., Kowalczyk, R.: Predicting partner’s behaviour in agent negotiation. In: AAMAS 2006. 5th International Joint Conference on Autonomous Agents and Multiagent Systems (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ren, F., Zhang, M. (2007). Predicting Partners’ Behaviors in Negotiation by Using Regression Analysis. In: Zhang, Z., Siekmann, J. (eds) Knowledge Science, Engineering and Management. KSEM 2007. Lecture Notes in Computer Science(), vol 4798. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76719-0_19
Download citation
DOI: https://doi.org/10.1007/978-3-540-76719-0_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-76718-3
Online ISBN: 978-3-540-76719-0
eBook Packages: Computer ScienceComputer Science (R0)