Skip to main content

Handling Spatio-temporal Sensor Data in Global Geographical Context with SENSORD

  • Conference paper
Ubiquitous Computing Systems (UCS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4836))

Included in the following conference series:

  • 722 Accesses

Abstract

It is important to manage sensors’ locations and their attributes in a coordinated manner to realize context-aware services based on sensing data. A coordinated means of management is also necessary for middleware providing various information services. We have been developing Sensor-Event-Driven Service Coordination Middleware (SENSORD) to realize uniform management of various sensors, their locations and their attributes and higher-level service. It provides sensor locations for users using a unified view with region-specific geographical information, so SENSORD provides data access interfaces like GIS. Sensor locations are a component of that spatial information. Therefore, it is effective to aggregate them into geographical information. In this paper, we first describe SENSORD. Second, we explain methods of managing spatial information and the computational flow of acquiring sensor location information. Moreover, we show an application of SENSORD: an indoor emergency response system in our laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abowd, G.D., Atkeson, C.G., Hong, J., Long, S., Kooper, R., Pinkerton, M.: Cyberguide: a mobile context-aware tour guide. Wireless Network 3(5), 421–433 (1997)

    Article  Google Scholar 

  2. Addlesee, M., Curwen, R., Hodges, S., Newman, J., Steggles, P., Ward, A., Hopper, A.: Implementing a sentient computing system. IEEE Computer Magazine (8), 50–56 (2001)

    Google Scholar 

  3. Krumm, J., Horvitz, E.: Predestinations: Inferring destinations from partial trajectories. In: Eighth International Conference on Ubiquitous Computing, pp. 243–260. ACM Press, New York (2006)

    Google Scholar 

  4. Sashima, A., Inoue, Y., Kurumatani, K.: Spatio-Temporal Sensor Data Management for Context-Aware Services. In: ADPUC 2006. Proc. of the International Workshop on Advanced Data Processing in Ubiquitous Computing (2006)

    Google Scholar 

  5. PostgreSQL, http://wwww.postgresql.org

  6. PostGIS, http://www.postgis.org

  7. Inoue, Y., Sashima, A., Kurumatani, K.: Indoor navigation system for emergency evacuation in ubiquitous environment. In: Eighth International Conference on Ubiquitous Computing, CD-ROM, ACM Press, New York (2006)

    Google Scholar 

  8. Yoda, I., Hosotani, D., Sakaue, K.: Ubiquitous strep vision for controlling safety on platforms in railroad stations. In: ACCV 2004. Proc. of the Sixth Asian Conference on Computer Vision, vol. 2, pp. 770–775 (2004)

    Google Scholar 

  9. Yoda, I., Sakaue, K.: Concept of ubiquitous streo vision and applications for human sensing. In: CIRA 2003. Proc. 2003 IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 1251–1257. IEEE Computer Society Press, Los Alamitos (2003)

    Chapter  Google Scholar 

  10. Al-Taha, K.K., Snodgrass, R.T., Soo, M.D.: Biblography on spatiotemporal databases. SIGMOD Rec. 22(1), 59–67 (1993)

    Article  Google Scholar 

  11. Kim, D.H., Ryu, K.H., Park, C.H.: Design and implementation of spatiotemporal database query processing system. Journal of Systems and Software 60(1), 37–49 (2002)

    Article  Google Scholar 

  12. Wolfson, O., Xu, B., Chamberlain, S., Jiang, L.: Moving objects database: Issues and solutions. In: Proc. of the 10th International Conference on Scientific and Statistical Database Management, pp. 111–122 (1998)

    Google Scholar 

  13. Jiao, B., Son, S.H., Stankovic, J.: GEM: Generic event service middleware for wireless sensor networks. In: INSS 2005. Proc. of the 2nd International Workshop on Networked Sensing Systems (June 2005)

    Google Scholar 

  14. Hwang, I., Han, Q., Miasra, A.: MASTAQ: A middleware architecture for sensor applications with statistical quality constraints. In: PERCOMW 2005: Proc. of the Third IEEE International Conference on Pervasive Computing and Communications Workshops, pp. 390–395. IEEE Computer Society, Washington, DC (2005)

    Chapter  Google Scholar 

  15. Li, S., Son, S.H., Stankovic, J.A.: Event detection services using data service middleware in distributed sensor networks. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 502–517. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Haruhisa Ichikawa We-Duke Cho Ichiro Satoh Hee Yong Youn

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ikeda, T., Inoue, Y., Sashima, A., Kurumatani, K. (2007). Handling Spatio-temporal Sensor Data in Global Geographical Context with SENSORD. In: Ichikawa, H., Cho, WD., Satoh, I., Youn, H.Y. (eds) Ubiquitous Computing Systems. UCS 2007. Lecture Notes in Computer Science, vol 4836. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76772-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76772-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76771-8

  • Online ISBN: 978-3-540-76772-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics