Summary
This paper describes recent developments in discrete convex analysis. Particular emphasis is laid on natural introduction of the classes of L-convex and M-convex functions in discrete and continuous variables. Expansion of the application areas is demonstrated by recent connections to submodular function maximization, finite metric space, eigenvalues of Hermitian matrices, discrete fixed point theorem, and matching games.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ageev, A., Sviridenko, M.: Pipage rounding: A new method of constructing algorithms with proven performance guarantee. J. Comb. Optim. 8, 307–328 (2004)
Altman, E., Gaujal, B., Hordijk, A.: Multimodularity, convexity, and optimization properties. Math. Oper. Res. 25, 324–347 (2000)
Altman, E., Gaujal, B., Hordijk, A.: Discrete-Event Control of Stochastic Networks: Multimodularity and Regularity. Lecture Notes in Mathematics, vol. 1829. Springer, Heidelberg (2003)
Bandelt, H.-J., Dress, A.W.M.: A canonical decomposition theory for metrics on a finite set. Adv. Math. 92, 47–105 (1992)
Bouchet, A., Cunningham, W.H.: Delta-matroids, jump systems, and bisubmodular polyhedra. SIAM J. Discrete Math. 8, 17–32 (1995)
Buneman, P.: The recovery of trees from measures of dissimilarity. In: Hodson, R.F., Kendall, D.G., Tautu, P. (eds.) Mathematics in the Archaeological and Historical Sciences, pp. 387–395. Edinburgh University Press, Edinburgh (1971)
Calinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a submodular set function subject to a matroid constraint (extended abstract). In: Fischetti, M., Williamson, D.P. (eds.) Integer Programming and Combinatorial Optimization. Lecture Notes in Computer Science, vol. 4513, pp. 182–196. Springer, Berlin (2007)
Chen, X., Deng, X.: A simplicial approach for discrete fixed point theorems. In: Chen, D.Z., Lee, D.T. (eds.) Computing and Combinatorics. Lecture Notes in Computer Science, vol. 4112, pp. 3–12. Springer, Berlin (2006)
Conforti, M., Cornuéjols, G.: Submodular set functions, matroids and the greedy algorithm: tight worst-case bounds and some generalizations of the Rado–Edmonds theorem. Discrete Appl. Math. 7, 251–274 (1984)
Cook, W.J., Cunningham, W.H., Pulleyblank, W.R., Schrijver, A.: Combinatorial Optimization. Wiley, New York (1998)
Danilov, V.I., Koshevoy, G.A.: Discrete convexity and Hermitian matrices. Proc. Steklov Inst. Math. 241, 58–78 (2003)
Deza, M.M., Laurent, M.: Geometry of Cuts and Metrics. Springer, Berlin (1997)
Dress, A.W.M., Wenzel, W.: Valuated matroid: A new look at the greedy algorithm. Appl. Math. Lett. 3, 33–35 (1990)
Dress, A.W.M., Wenzel, W.: Valuated matroids. Adv. Math. 93, 214–250 (1992)
Dress, A.W.M., Moulton, V., Terhalle, W.: T-theory: an overview. Eur. J. Comb. 17, 161–175 (1996)
Edmonds, J.: Submodular functions, matroids and certain polyhedra. In: Guy, R., Hanani, H., Sauer, N., Schönheim, J. (eds.) Combinatorial Structures and Their Applications, pp. 69–87. Gordon and Breach, New York (1970). Also in: Jünger, M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization—Eureka, You Shrink! Lecture Notes in Computer Science, vol. 2570, pp. 11–26. Springer, Berlin (2003)
Eriksson, K., Karlander, J.: Stable matching in a common generalization of the marriage and assignment models. Discrete Math. 217, 135–156 (2000)
Favati, P., Tardella, F.: Convexity in nonlinear integer programming. Ric. Oper. 53, 3–44 (1990)
Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for maximizing submodular set functions II. Math. Program. Study 8, 73–87 (1978)
Fleiner, T.: A matroid generalization of the stable matching polytope. In: Gerards, B., Aardal, K. (eds.) Integer Programming and Combinatorial Optimization. Lecture Notes in Computer Science, vol. 2081, pp. 105–114. Springer, Berlin (2001)
Fleiner, T.: A fixed point approach to stable matchings and some applications. Math. Oper. Res. 28, 103–126 (2003)
Frank, A.: A weighted matroid intersection algorithm. J. Algorithms 2, 328–336 (1981)
Frank, A.: An algorithm for submodular functions on graphs. Ann. Discrete Math. 16, 97–120 (1982)
Fujishige, S.: Theory of submodular programs: A Fenchel-type min-max theorem and subgradients of submodular functions. Math. Program. 29, 142–155 (1984)
Fujishige, S.: Submodular Functions and Optimization, 2nd edn. Annals of Discrete Mathematics, vol. 58. Elsevier, Amsterdam (2005)
Fujishige, S., Murota, K.: Notes on L-/M-convex functions and the separation theorems. Math. Program. 88, 129–146 (2000)
Fujishige, S., Tamura, A.: A two-sided discrete-concave market with possibly bounded side payments: An approach by discrete convex analysis. Math. Oper. Res. 32, 136–155 (2007)
Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes. Walter de Gruyter, Berlin (1994)
Fulton, W.: Eigenvalues, invariant factors, highest weights, and Schubert calculus. Bull., New Ser., Am. Math. Soc. 37, 209–249 (2000)
Gale, D., Shapley, L.S.: College admissions and stability of marriage. Am. Math. Mon. 69, 9–15 (1962)
Hajek, B.: Extremal splittings of point processes. Math. Oper. Res. 10, 543–556 (1985)
Hirai, H.: A geometric study of the split decomposition. Discrete Comput. Geom. 36, 331–361 (2006)
Hirai, H., Murota, K.: M-convex functions and tree metrics. Jpn. J. Ind. Appl. Math. 21, 391–403 (2004)
Iimura, T.: A discrete fixed point theorem and its applications. J. Math. Econ. 39, 725–742 (2003)
Iimura, T., Murota, K., Tamura, A.: Discrete fixed point theorem reconsidered. J. Math. Econ. 41, 1030–1036 (2005)
Iwata, S.: Submodular function minimization. Math. Program. Ser. B 112, 45–64 (2007)
Iwata, S., Shigeno, M.: Conjugate scaling algorithm for Fenchel-type duality in discrete convex optimization. SIAM J. Optim. 13, 204–211 (2003)
Iwata, S., Moriguchi, S., Murota, K.: A capacity scaling algorithm for M-convex submodular flow. Math. Program. 103, 181–202 (2005)
Jensen, P.M., Korte, B.: Complexity of matroid property algorithms. SIAM J. Comput. 11, 184–190 (1982)
Karzanov, A.V.: Concave cocirculations in a triangular grid. Linear Algebra Appl. 400, 67–89 (2005)
Klyachko, A.A.: Stable bundles, representation theory and Hermitian operators. Sel. Math. 4, 419–445 (1998)
Knutson, A., Tao, T.: Honeycombs and sums of Hermitian matrices. Not. Am. Math. Soc. 48, 175–186 (2001)
Knutson, A., Tao, T., Woodward, C.: The honeycomb model of GL n (C) tensor products II: Puzzles determine facets of the Littlewood–Richardson cone. J. Am. Math. Soc. 17, 19–48 (2003)
Kobayashi, Y., Murota, K.: Induction of M-convex functions by linking systems. Discrete Appl. Math. 155, 1471–1480 (2007)
Kobayashi, Y., Takazawa, K.: Even factors, jump systems, and discrete convexity. METR 2007-36, Department of Mathematical Informatics, University of Tokyo (June 2007). J. Comb. Theory, Ser. B, to appear
Kobayashi, Y., Murota, K., Tanaka, K.: Operations on M-convex functions on jump systems. SIAM J. Discrete Math. 21, 107–129 (2007)
Koichi, S.: The Buneman index via polyhedral split decomposition. METR 2006-57, Department of Mathematical Informatics, University of Tokyo (November 2006)
Kolmogorov, V., Shioura, A.: New algorithms for the dual of the convex cost network flow problem with application to computer vision. Preprint (2007)
Korte, B., Vygen, J.: Combinatorial Optimization: Theory and Algorithms, 4th edn. Springer, Berlin (2008)
Lehmann, B., Lehmann, D., Nisan, N.: Combinatorial auctions with decreasing marginal utilities. Games Econ. Behav. 55, 270–296 (2006)
Lovász, L.: Matroid matching and some applications. J. Comb. Theory, Ser. B 28, 208–236 (1980)
Lovász, L.: Submodular functions and convexity. In: Bachem, A., Grötschel, M., Korte, B. (eds.) Mathematical Programming—The State of the Art, pp. 235–257. Springer, Berlin (1983)
Miller, B.L.: On minimizing nonseparable functions defined on the integers with an inventory application. SIAM J. Appl. Math. 21, 166–185 (1971)
Moriguchi, S., Murota, K., Shioura, A.: Scaling algorithms for M-convex function minimization. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 85-A, 922–929 (2002)
Murota, K.: Valuated matroid intersection, I: optimality criteria. SIAM J. Discrete Math. 9, 545–561 (1996a)
Murota, K.: Valuated matroid intersection, II: algorithms. SIAM J. Discrete Math. 9, 562–576 (1996b)
Murota, K.: Convexity and Steinitz’s exchange property. Adv. Math. 124, 272–311 (1996c)
Murota, K.: Fenchel-type duality for matroid valuations. Math. Program. 82, 357–375 (1998a)
Murota, K.: Discrete convex analysis. Math. Program. 83, 313–371 (1998b)
Murota, K.: Submodular flow problem with a nonseparable cost function. Combinatorica 19, 87–109 (1999)
Murota, K.: Matrices and Matroids for Systems Analysis. Springer, Berlin (2000)
Murota, K.: Discrete Convex Analysis—An Introduction. Kyoritsu Publishing Co., Tokyo (2001) (in Japanese)
Murota, K.: Discrete Convex Analysis. SIAM Monographs on Discrete Mathematics and Applications, vol. 10. SIAM, Philadelphia (2003a)
Murota, K.: On steepest descent algorithms for discrete convex functions. SIAM J. Optim. 14, 699–707 (2003b)
Murota, K.: Note on multimodularity and L-convexity. Math. Oper. Res. 30, 658–661 (2005)
Murota, K.: M-convex functions on jump systems: A general framework for minsquare graph factor problem. SIAM J. Discrete Math. 20, 213–226 (2006)
Murota, K., Shioura, A.: M-convex function on generalized polymatroid. Math. Oper. Res. 24, 95–105 (1999)
Murota, K., Shioura, A.: Extension of M-convexity and L-convexity to polyhedral convex functions. Adv. Appl. Math. 25, 352–427 (2000)
Murota, K., Shioura, A.: Conjugacy relationship between M-convex and L-convex functions in continuous variables. Math. Program. 101, 415–433 (2004a)
Murota, K., Shioura, A.: Fundamental properties of M-convex and L-convex functions in continuous variables. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 87-A, 1042–1052 (2004b)
Murota, K., Tamura, A.: On circuit valuation of matroids. Adv. Appl. Math. 26, 192–225 (2001)
Murota, K., Tamura, A.: Proximity theorems of discrete convex functions. Math. Program. 99, 539–562 (2004)
Narayanan, H.: Submodular Functions and Electrical Networks. Annals of Discrete Mathematics, vol. 54. North-Holland, Amsterdam (1997)
Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions I. Math. Program. 14, 265–294 (1978)
Oxley, J.G.: Matroid Theory. Oxford University Press, Oxford (1992)
Recski, A.: Matroid Theory and Its Applications in Electric Network Theory and in Statics. Springer, Berlin (1989)
Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
Roth, A.E., Sotomayor, M.A.O.: Two-Sided Matching—A Study in Game-Theoretic Modeling and Analysis. Cambridge University Press, Cambridge (1990)
Schrijver, A.: Combinatorial Optimization—Polyhedra and Efficiency. Springer, Heidelberg (2003)
Semple, C., Steel, M.: Phylogenetics. Oxford University Press, Oxford (2003)
Shapley, L.S., Shubik, M.: The assignment game I: The core. Int. J. Game Theory 1, 111–130 (1972)
Shioura, A.: Fast scaling algorithms for M-convex function minimization with application to the resource allocation problem. Discrete Appl. Math. 134, 303–316 (2003)
Shioura, A.: On the pipage rounding algorithm for submodular function maximization: A view from discrete convex analysis. METR 2008-03, Department of Mathematical Informatics, University of Tokyo (January 2008)
Shioura, A., Tanaka, K.: Polynomial-time algorithms for linear and convex optimization on jump systems. SIAM J. Discrete Math. 21, 504–522 (2007)
Sotomayor, M.: A labor market with heterogeneous firms and workers. International J. Game Theory 31, 269–283 (2002)
Speyer, D.: Tropical linear spaces. arXiv:math.CO/0410455 (2004)
Speyer, D., Sturmfels, B.: The tropical Grassmannian. Adv. Geom. 4, 389–411 (2004)
Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32, 41–43 (2004)
Tamura, A.: Applications of discrete convex analysis to mathematical economics. Publ. Res. Inst. Math. Sci. 40, 1015–1037 (2004)
Tamura, A.: Coordinatewise domain scaling algorithm for M-convex function minimization. Math. Program. 102, 339–354 (2005)
Topkis, D.M.: Supermodularity and Complementarity. Princeton University Press, Princeton (1998)
van der Laan, G., Talman, D., Yang, Z.: Solving discrete zero point problems. Math. Program. 108, 127–134 (2006)
Vondrák, J.: Optimal approximation for the submodular welfare problem in the value oracle model. In: 40th ACM Symposium on Theory of Computing (May 2008)
White, N. (ed.): Theory of Matroids. Cambridge University Press, London (1986)
Zipkin, P.: On the structure of lost-sales inventory models. Oper. Res. (2008). doi:10.1287/opre.1070.0482
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Murota, K. (2009). Recent Developments in Discrete Convex Analysis. In: Cook, W., Lovász, L., Vygen, J. (eds) Research Trends in Combinatorial Optimization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76796-1_11
Download citation
DOI: https://doi.org/10.1007/978-3-540-76796-1_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-76795-4
Online ISBN: 978-3-540-76796-1
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)