Summary
In this paper we survey results related to homomorphism dualities for graphs, and more generally, for finite structures. This is related to some of the classical combinatorial problems, such as colorings of graphs and hypergraphs, and also to recently intensively studied Constraint Satisfaction Problems. On the other side dualities are related to the descriptive complexity and First Order definability as well as to universal graphs. And in yet another context they can be expressed as properties of the homomorphism order of structures. In the contemporary context homomorphism dualities are a complex area and it is our aim to describe some of the main ideas only. However we introduce the four conceptually different proofs of the existence of duals thus indicating the versatility of this notion. Particularly we describe setting of restricted dualities and the role of bounded expansion classes.
Part of this work was supported by ITI and DIMATIA of Charles University Prague under grant1M0021620808 and by AEOLUS.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Atserias, A.: On digraph coloring problems and treewidth duality. Eur. J. Comb. 29(4), 796–820 (2008)
Atserias, A., Dawar, A., Kolaitis, Ph.G.: On preservation under homomorphisms and conjunctive queries. J. Assoc. Comput. Mach. 53(2), 208–237 (2006)
Borgs, C., Chayes, J., Lovász, L., Sós, V.T., Vesztergombi, K.: Counting Graph Homomorphisms. Topics in Discrete Mathematics, pp. 315–371. Springer, Berlin (2006)
Cameron, P.J.: The random graph. In: Graham, R.L., Nešetřil, J. (eds.) The Mathematics of Paul Erdös, pp. 333–351. Springer, Berlin (1998)
Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational data bases. In: STOC’77, pp. 77–90. Am. Math. Soc., Providence (1977). Also: Springer, Berlin (1998), pp. 333–351
Cherlin, G., Komjáth, P.: There is no universal countable pentagon free graph. J. Graph Theory 18, 337–341 (1994)
Cherlin, G., Shelah, S., Shi, N.: Universal graphs with forbidden subgraphs and algebraic closure. Adv. Appl. Math. 22, 454–491 (1999)
Cherlin, G., Shi, N.: Graphs omitting a finite set of cycles. J. Graph Theory 21, 351–355 (1996)
Cherlin, G., Shi, N.: Forbidden subgraphs and forbidden substructures. J. Symb. Logic 66(3), 1342–1352 (2003)
Dvořák, Z.: On forbidden subdivision characterization of graph classes. Eur. J. Comb. (2008, to appear)
Fagin, R.: Generalized first-order spectra and polynomial-time recognizable sets. In: Karp, R. (ed.) Complexity of Computation. SIAM–AMS Proceedings, vol. 7, pp. 43–73 (1974)
Feder, T., Vardi, M.: The computational structure of monotone monadic SNP and constraint satisfaction: A study through Datalog and group theory. SIAM J. Comput. 28(1), 57–104 (1999)
Feder, T., Hell, P., Klein, S., Motwani, R.: Complexity of graph partition problems. In: 31st Annual ACM STOC, pp. 464–472 (1999)
Foniok, J., Nešetřil, J., Tardif, C.: Generalized dualities and maximal finite antichains in the homomorphism order of relational structures. Eur. J. Comb. 29(4), 881–899 (2008)
Gács, P., Lovász, L.: Some remarks on generalized spectra. Z. Math. Log. Grdl. 23(6), 547–554 (1977)
Gallai, T.: On directed paths and circuits. In: Theory of Graphs, Proc. Colloq., Tihany, 1966, pp. 115–118. Academic Press, New York (1968)
Gottlob, G., Koch, C., Schulz, K.U.: Conjunctive queries over trees. Manuscript (2008)
Hajnal, A., Pach, J.: Monochromatic paths in infinite graphs. In: Finite and Infinite Sets. Coll. Math. Soc. J. Bolyai, vol. 37, pp. 359–369. Eger, Hungary (1981)
Hasse, M.: Zur algebraischen Begründung der Graphentheorie. I. Math. Nachr. 28, 275–290 (1964/1965)
Hell, P., Nešetřil, J.: Graphs and Homomorphism. Oxford University Press, Oxford (2004)
Hodges, W.: Model Theory. Cambridge University Press, Cambridge (1993)
Hubička, J., Nešetřil, J.: Universal structures as shadows of ultrahomogeneous structures (2008, submitted)
Immerman, N.: Languages that capture complexity classes. SIAM J. Comput. 16, 760–778 (1987)
Kolaitis, P., Vardi, M.: Conjunctive query containment and constraint satisfaction. In: Symposium on Principles of Database Systems (PODS98), pp. 205–213 (1998)
Komárek, P.: Some new good characterizations of directed graphs. Čas. Pěst. Mat. 109, 348–354 (1984)
Komárek, P.: Good characterizations in the class of oriented graphs. Doctoral dissertation, Praha, 1987 (in Czech)
Komjáth, P.: Some remarks on universal graphs. Discrete Math. 199, 259–265 (1999)
Komjáth, P., Mekler, A.: J. Pach: Some universal graphs. Israel J. Math. 64, 158–168 (1988)
Kun, G.: On the complexity of Constraint Satisfaction Problem. PhD thesis (2006) (in Hungarian)
Kun, G.: Constraints, MMSNP and expander structures. Combinatorica (2007, submitted)
Kun, G., Nešetřil, J.: NP by means of lifts and shadows. In: Proc. MFCS’07. Lecture Notes in Computer Science, vol. 4708, pp. 171–181. Springer, Berlin (2007)
Kun, G., Nešetřil, J.: Forbidden lifts (NP and CSP for combinatorists). Eur. J. Comb. 29(4), 930–945 (2008)
Kun, G., Tardif, C.: Homomorphisms of random paths (2008, in preparation)
Ladner, R.E.: On the structure of Polynomial Time Reducibility. J. Assoc. Comput. Mach. 22(1), 155–171 (1975)
Lovász, L.: Operations with structures. Acta Math. Hung. 18, 321–328 (1967)
Luczak, T., Nešetřil, J.: A probabilistic approach to the dichotomy problem. SIAM J. Comput. 36(3), 835–843 (2006)
Madelaine, F.: Constraint satisfaction problems and related logic. PhD thesis (2003)
Madelaine, F., Stewart, I.A.: Constraint satisfaction problems and related logic. Manuscript (2005)
Matoušek, J., Nešetřil, J.: Constructions of sparse graphs with given homomorphisms (2008, in preparation)
Minty, G.J.: A theorem on n-coloring the points of a linear graph. Am. Math. Monthly 69, 623–624 (1962)
Nešetřil, J.: Teorie Grafu. SNTL, Praha (1979)
Nešetřil, J.: Aspects of structural combinatorics. Taiwan. J. Math. 3(4), 381–424 (1999)
Nešetřil, J., Ossona de Mendez, P.: Cuts and bounds. Discrete Math. 302(1–3), 211–224 (2005)
Nešetřil, J., Ossona de Mendez, P.: Folding. J. Comb. Theory, Ser. B 96(5), 730–739 (2006a)
Nešetřil, J., Ossona de Mendez, P.: Tree depth, subgraph coloring and homomorphism bounds. Eur. J. Math. 27(6), 1022–1041 (2006b)
Nešetřil, J., Ossona de Mendez, P.: Low tree-width decompositions and algorithmic consequences. In: STOC’06, Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pp. 391–400. ACM Press, New York (2006c)
Nešetřil, J., Ossona de Mendez, P.: Grad and classes with bounded expansion I. Decompositions. Eur. J. Comb. 29(3), 760–776 (2008a)
Nešetřil, J., Ossona de Mendez, P.: Grad and classes with bounded expansion II. Algorithmic aspects. Eur. J. Comb. 29(3), 777–791 (2008b)
Nešetřil, J., Ossona de Mendez, P.: Grad and Classes with bounded expansion III—restricted dualities. Eur. J. Comb. 29(4), 1012–1024 (2008c)
Nešetřil, J., Ossona de Mendez, P.: Structural properties of sparse graphs. In: Lovász volume, Bolyai Society and Springer (2008d)
Nešetřil, J., Ossona de Mendez, P.: First order properties on nowhere dense structures (2008e, submitted)
Nešetřil, J., Poljak, S.: Complexity of the Subgraph Problem. Comment. Math. Univ. Carol. 26(2), 415–420 (1985)
Nešetřil, J., Pultr, A.: On classes of relations and graphs determined by subobjects and factorobjects. Discrete Math. 22, 287–300 (1978)
Nešetřil, J., Rödl, V.: Chromatically optimal rigid graphs. J. Comb. Theory, Ser. B 46, 133–141 (1989)
Nešetřil, J., Tardif, C.: Duality theorems for finite structures (characterising gaps and good characterizations). J. Comb. Theory, Ser. B 80, 80–97 (2000)
Nešetřil, J., Tardif, C.: Homomorphism duality: On short answers to exponentially long questions. SIAM J. Discrete Math. 19, 914–920 (2005)
Nešetřil, J., Tardif, C.: A dualistic approach to bounding the chromatic number of a graph. Eur. J. Comb. 29(1), 254–260 (2008a)
Nešetřil, J., Tardif, C.: Path homomorphisms, graph colourings and boolean matrices (2008b, submitted)
Nešetřil, J., Zhu, X.: On sparse graphs with given colorings and homomorphisms. J. Comb. Theory, Ser. B 90, 161–172 (2004)
Nešetřil, J., Pultr, A., Tardif, C.: Gaps and dualities in Heyting categories. Comment. Math. Univ. Carol. 48, 9–23 (2007)
Pultr, A., Trnková, V.: Combinatorial, Algebraical and Topological Representations of Groups, Monoids and Categories. North-Holland, Amsterdam (1968)
Rossman, B.: Existential positive types and preservation under homomorphisms. In: 20th IEEE Symposium on Logic in Computer Science (LICS), pp. 467–476 (2005)
Roy, B.: Nombre chromatique et plus longs chemins d’un graphe. Rev. Francaise Inform. Rech. Opér. 1, 129–132 (1967)
Simonyi, G., Tardos, G.: Local chromatic number. Ky Fan’s theorem and circular colorings, Combinatorica 26, 589–626 (2006)
Thomassen, C.: Grötzsch’s 3-color theorem and its counterparts for torus and the projective plane. J. Comb. Theory, Ser. B 62, 268–279 (1994)
Vardi, M.Y.: The complexity of relational query languages. In: Proceedings of 14th ACM Symposium on Theory of Computing, pp. 137–146 (1982)
Vitaver, L.M.: Determination of minimal coloring of vertices of a graph by means of Boolean powers of the incidence matrix. Dokl. Akad. Nauk SSSR 147, 758–759 (1962) (in Russian)
Welzl, E.: Color families are dense. J. Theor. Comput. Sci. 17, 29–41 (1982)
Zhu, X.: Colouring graphs with bounded generalized colouring number. Discrete Math. (2008, in press)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Nešetřil, J. (2009). Many Facets of Dualities. In: Cook, W., Lovász, L., Vygen, J. (eds) Research Trends in Combinatorial Optimization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76796-1_13
Download citation
DOI: https://doi.org/10.1007/978-3-540-76796-1_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-76795-4
Online ISBN: 978-3-540-76796-1
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)