Skip to main content

From Spheres to Spheropolyhedra: Generalized Distinct Element Methodology and Algorithm Analysis

  • Chapter
Research Trends in Combinatorial Optimization

Summary

The Distinct Element Method (DEM) is a popular tool to perform granular media simulations. The two key elements this requires are an adequate model for inter-particulate contact forces and an efficient contact detection method. Originally, this method was designed to handle spherical-shaped grains that allow for efficient contact detection and simple yet realistic contact force models. Here we show that both properties carry over to grains of a much more general shape called spheropolyhedra (Minkowski sums of spheres and polyhedra). We also present some computational experience and results with the new model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abreu, C.R.A., Tavares, F.W., Castier, M.: Influence of particle shape on the packing and on the segregation of spherocylinders via Monte Carlo simulations. Powder Technol. 134(1–2), 167–180 (2003)

    Article  Google Scholar 

  • Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Clarendon, Oxford (1987)

    MATH  Google Scholar 

  • Attali, D., Boissonnat, J.-D.: A linear bound on the complexity of the Delaunay triangulation of points on polyhedral surfaces. Discrete Comput. Geom. 31(3), 369–384 (2004)

    MATH  MathSciNet  Google Scholar 

  • Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  • Ferrez, J.-A.: Dynamic triangulations for efficient 3D simulation of granular materials. Thèse № 2432, EPFL (2001)

    Google Scholar 

  • Ferrez, J.-A., Liebling, T.M.: Dynamic triangulations for efficient detection of collisions between spheres with applications in granular media simulations. Philos. Mag. B 82(8), 905–929 (2002)

    Google Scholar 

  • Gel’fand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants of polynomials of several variables and triangulations of Newton polyhedra. Leningrad Math. J. 2, 449–505 (1990)

    MATH  MathSciNet  Google Scholar 

  • Makse, H.A., Havlin, S., King, P.R., Stanley, H.E.: Spontaneous stratification in granular mixtures. Nature 386, 379–382 (1997)

    Article  Google Scholar 

  • Matuttis, H.-G., Luding, S., Herrmann, H.J.: Discrete element methods for the simulation of dense packings and heaps made of spherical and non-spherical particles. Powder Technol. 109(1–3), 278–292 (2000)

    Article  Google Scholar 

  • Müller, D.: Techniques informatiques efficaces pour la simulation de mileux granulaires par des méthodes d’éléments distincts. Thèse № 1545, EPFL (1996)

    Google Scholar 

  • Müller, D., Liebling, T.M.: Detection of collisions of polygons by using a triangulation. In: Raous, M., et al. (eds.) Contact Mechanics, pp. 369–372. Plenum, New York (1995)

    Google Scholar 

  • Muth, B., Eberhard, P., Luding, S.: Collisions between particles of complex shapes. In: García-Rojo, R., Herrmann, H.J., McNamara, S. (eds.) Powders and Grains 2005, vol. II, pp. 1379–1383. Balkema, Rotterdam (2005)

    Google Scholar 

  • Muth, B., Müller, M.-K., Eberhard, P., Luding, S.: Contacts between many bodies. Mach. Dyn. Prob. 28(1), 101–114 (2004)

    Google Scholar 

  • O’Connor, R.M.: A distributed discrete element modeling environment—algorithms, implementation and applications. Ph.D. thesis, MIT (1996)

    Google Scholar 

  • Pournin, L.: On the behavior of spherical and non-spherical grain assemblies, its modeling and numerical simulation. Thèse № 3378, EPFL (2005)

    Google Scholar 

  • Pournin, L., Liebling, T.M.: Constrained paths in the flip-graph of regular triangulations. Comput. Geom. 37(2), 134–140 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  • Pournin, L., Liebling, T.M., Mocellin, A.: Molecular-dynamics force models for better control of energy dissipation in numerical simulations of dense granular media. Phys. Rev. E 65, 011302 (2002)

    Google Scholar 

  • Pournin, L., Weber, M., Tsukahara, M., Ferrez, J.-A., Ramaioli, M., Liebling, T.M.: Three-dimensional distinct element simulation of spherocylinder crystallization. Granul. Matter 7(2–3), 119–126 (2005)

    Article  MATH  Google Scholar 

  • Ramaioli, M.: Granular flow simulations and experiments for the food industry. Thèse № 3997, EPFL (2007)

    Google Scholar 

  • Ramaioli, M., Pournin, L., Liebling, T.M.: Numerical and experimental investigation of alignment and segregation of vibrated granular media composed of rods and spheres. In: García-Rojo, R., Herrmann, H.J., McNamara, S. (eds.) Powders and Grains 2005, vol. II, pp. 1359–1363. Balkema, Rotterdam (2005)

    Google Scholar 

  • Ramaioli, M., Pournin, L., Liebling, T.M.: Vertical ordering of rods under vertical vibration. Phys. Rev. E 76(2), 021304 (2007)

    Article  Google Scholar 

  • Samet, H.: The quadtree and related hierarchical data structures. ACM Comput. Surv. 16, 187–260 (1984)

    Article  MathSciNet  Google Scholar 

  • Schinner, A.: Fast algorithms for the simulation of polygonal particles. Granul. Matter 2(1), 35–43 (1999)

    Article  Google Scholar 

  • Sigurgeirsson, H., Stuart, A., Wan, W.-L.: Algorithms for particle-field simulations with collisions. J. Comput. Phys. 172, 766–807 (2001)

    Article  MATH  Google Scholar 

  • Walton, O.R., Braun, R.L.: Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional discs. J. Rheol. 30, 949–980 (1986)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pournin, L., Liebling, T.M. (2009). From Spheres to Spheropolyhedra: Generalized Distinct Element Methodology and Algorithm Analysis. In: Cook, W., Lovász, L., Vygen, J. (eds) Research Trends in Combinatorial Optimization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76796-1_16

Download citation

Publish with us

Policies and ethics